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The Weiss variational principle in mechanics and classical field theory is a variational principle
which allows displacements of the boundary. We review the Weiss variation in mechanics and classi-
cal field theory, and present a novel geometric derivation of the Weiss variation for the gravitational
action: the Einstein-Hilbert action plus the Gibbons-Hawking-York boundary term. In particular,
we use the first and second variation of area formulas (we present a derivation accessible to physi-
cists in an appendix) to interpret and vary the Gibbons-Hawking-York boundary term. The Weiss
variation for the gravitational action is in principle known to the Relativity community, but the
variation of area approach formalizes the derivation, and facilitates the discussion of time evolution
in General Relativity. A potentially useful feature of the formalism presented in this article is that
it avoids an explicit 3+1 decomposition in the bulk spacetime.
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I. INTRODUCTION

The Weiss variational principle is a variational principle which includes variations of the boundaries for the action
integral [1, 2]. In particular, the Weiss variation includes infinitesimal displacements of the endpoints for a mechanical
action, or displacement of the spacetime boundaries for the action of a classical field theory. In general relativity (GR),
the approach we present is based on and makes explicit that displacements of the boundary produce the contribution
of the Gibbons-Hawking-York surface integral to the field equations. In mechanics, the Weiss variation may be used
to identify a Hamiltonian without performing a Legendre transformation, and in classical field theory, one may use the
Weiss variation to identify the Hamiltonian without performing a 3+1 split in the bulk. In particular, one may use the
Weiss variation without an explicit 3+1 split in the bulk to extract the canonical variables and Hamiltonian for GR.
The Weiss variation also provides a quick way to obtain the Hamilton-Jacobi equation directly from boundary terms.
In this sense, the Weiss variation formalism provides a complementary addition to the existing canonical formalism
for boundary terms in GR (see [3–8] and references therein).
In the gravitational case, variational principles are complicated by the fact that the Einstein-Hilbert action contains

second-order derivatives of the metric tensor; the variation of the Einstein-Hilbert action will, as a result, contain
boundary terms proportional to the derivatives of the metric tensor variations [9]. One is then forced to hold both
the metric tensor and its derivatives fixed at the boundary. If the Gibbons-Hawking-York (GHY) boundary term is
added to the Einstein-Hilbert action [10–12], and if the components of the metric tensor (only) are held fixed at the
boundary, the variation of the GHY boundary term will cancel out boundary terms proportional to the derivatives of
the metric tensor variations (also see [13, 14]).
The Weiss variation of the gravitational action (the Einstein-Hilbert action plus the GHY boundary term) requires

the variation of the GHY boundary term under displacements of the boundary. This is the principal insight that we
bring to this problem. One may obtain the variation of the GHY term by brute force, but since the GHY boundary
term is expressed in terms of geometric quantities (it is in fact the integral of the mean curvature of the boundary
surface), it is natural to use a formalism in which the geometric meaning is apparent. Fortunately, the variation of
area formulas [15] and [16–18], which describe the variation of the volume of a hypersurface under displacements,
provide such a formalism. Upon comparison with the first variation of area formula, one may interpret the GHY
boundary term as the first-order variation of “area” (the 3-volume) for the boundary under a unit displacement of
the boundary surface in the direction of the unit normal vector–the GHY boundary term is a special case of the first
variation of area formula. The second variation of area formula [16–18] describes a variation in the first variation of
area formula under a displacement (which may be independent of the first displacement) of the hypersurface. With
it we obtain an expression for the variation of the GHY boundary term.
The Weiss variation for the gravitational action is not a new result. Once we present the Weiss variation for a

mechanical system, a reader familiar with the ADM canonical formulation of GR [14, 19, 20] should be able to infer
the Weiss variation for the gravitational action without much difficulty. Some terms in the Weiss variation can be
inferred from results in the existing literature [3–5, 8] which examine metric variations of the GHY boundary term.
The variation of gravitational action that results from boundary displacements is also well-known in the form of
the Einstein-Hamilton-Jacobi equation [21, 22] (see also [23] and references therein).1 What is new is our geometric

derivation of the Weiss variation for the gravitational action and variations due to explicit boundary displacements,
which do not to our knowledge appear in the existing literature. Furthermore, our formalism avoids an explicit 3+1
decomposition of the bulk spacetime. It should be stressed that we claim no lack of generality in ignoring explicit
boundary displacements; infinitesimal boundary displacements can in principle be absorbed into metric variations (in
both the bulk and boundary metric). While our formalism may be useful for describing situations where a global
3+1 decomposition is inappropriate (for instance, spacetime manifolds which fail to be globally hyperbolic), we again
do not suggest a lack of generality in employing a 3+1 decomposition for boundary variations, as the use of such
a formalism for boundary variation only requires the existence of such a decomposition in a neighborhood of the
boundary.
Below, we review the Weiss variational principle in mechanics and in classical field theory. Next, we briefly review

some definitions and results in semi-Riemannian geometry, and present the variation of area formulas. We review the
standard variation for the gravitational action (for spacetimes with and without spatial boundary) and extend it to
include contributions from displacements of the action. Finally, we rewrite the variation of the resulting action in
Weiss form.
We assume a 4-dimensional spacetime manifold M, with U ⊂ M and W ⊂ M being subsets of a spacetime

manifold M of nonzero volume. We use W and U to distinguish between spacetime regions with and without spatial
boundary; W has spatial boundary, and U does not. We use the MTW [9] signature (−,+,+,+) for the metric tensor

1 We discuss in Sec. IIA the relationship between Hamilton-Jacobi theory and the Weiss variation.
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gµν , x will represent a points on the spacetime manifold M, and y will represent points on hypersurfaces (surfaces
of codimension one) in M, U or W . Greek indices refer to coordinates on the spacetime manifold M, U and W;
coordinates on M will be denoted xµ with x0 = t being the time coordinate. Lowercase Latin indices refer either to
mechanical degrees of freedom or coordinates on hypersurfaces–the distinction should be apparent from the context.
Capital Latin indices from the beginning of the alphabet will either refer to two-dimensional surfaces in M, or to the
components of a generic classical field–again, the distinction should be apparent from the context. Thus, coordinates
on hypersurfaces will be denoted yi, and coordinates on two-dimensional surfaces will be denoted zA.

II. THE WEISS VARIATIONAL PRINCIPLE

A. Mechanics

We begin by reviewing the Weiss variational principle in mechanics, as discussed in [1], [2] and [24]. Mechanical
systems are typically described by an action functional of the form:

S[q] :=

∫ t2

t1

L(q, q̇, t) dt (2.1)

where the quantities qi form the degrees of freedom for the mechanical system in question. The functions qi = qi(t)
describe paths in the manifold formed from qi and t. The primary feature of the Weiss variation is that endpoint
variations are allowed–even displacements of the endpoints themselves. Here, we consider two paths described by the

functions qi(t) and q′
i
(t), which differ infinitesimally in the following manner:

q′
i
(t) = qi(t) + ǫ ηi(t) (2.2)

where ǫ ≪ 1 is an infinitesimal parameter and ηi(t) is some function, which is not assumed to vanish at the endpoints.
The difference in the endpoints may be characterized by differences in the value of the time parameter for the
endpoints,

t′1 = t1 + ǫ τ1

t′2 = t2 + ǫ τ2
(2.3)

The action for the path q′i(t) which has endpoints t′1 and t′2 takes the following form, to first order in ǫ:

S[q′] =

∫ t′
2

t′
1

L(q′(t), q̇′(t), t)dt =

∫ t2+ǫ τ2

t1+ǫ τ1

L(q(t) + ǫ η(t), q̇(t) + ǫ η̇(t), t)dt

=

∫ t2

t1

ǫ

(

∂L

∂qi
ηi(t) +

∂L

∂q̇i
η̇i(t)

)

dt+

∫ t2

t1

L(q(t), q̇(t), t)dt

+

∫ t2+ǫ τ2

t2

L(q(t), q̇(t), t)dt −
∫ t1+ǫ τ1

t1

L(q(t), q̇(t), t)dt

= S[q] + ǫ

∫ t2

t1

(

∂L

∂qi
− d

dt

(

∂L

∂q̇i

))

ηi(t) dt+

(

∂L

∂q̇i
ǫ ηi(t) + L∆t

)∣

∣

∣

∣

t2

t1

(2.4)

where ∆t = ∆t(t) is a function that satisfies ∆t(t1) = ǫ τ1 and ∆t(t2) = ǫ τ2, and S[q] is the action for the path
qi(t) with the endpoints t1 and t2. It is convenient to rewrite the boundary/endpoint term in terms of the total
displacement of the endpoints ∆qi1 and ∆qi2:

∆qi1 := q′
i
(t′1)− qi(t1) = ǫ(ηi(t1) + τ1 q̇

i(t1)) +O(ǫ2)

∆qi2 := q′
i
(t′2)− qi(t2) = ǫ(ηi(t2) + τ2 q̇

i(t2)) +O(ǫ2)
(2.5)

The variation in the action, to first order in ǫ, becomes:

δS = ǫ

∫ t2

t1

(

∂L

∂qi
− d

dt

(

∂L

∂q̇i

))

ηi(t) dt+
(

pi ∆qi −
(

pi q̇
i − L

)

∆t
)

∣

∣

∣

∣

t2

t1

(2.6)
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where ∆qi = ∆qi(t) satisfies ∆qi(t1) = ∆qi1 and ∆qi(t2) = ∆qi2, and we have defined the following:

pi :=
∂L

∂q̇i
(2.7)

Note that the quantity appearing in front of ∆t in (2.6) is in fact the Hamiltonian:

H := pi q̇
i − L (2.8)

The Weiss variational principle states that the physical paths qi(t) are those which have the property that general
infinitesimal variations about qi(t) produce only boundary/endpoint contributions to lowest order in the variation
parameters. Simply put, physical paths qi(t) are those for which the first order variations about qi(t) yield variations
in the action of the form:

δS =
(

pi ∆qi −H ∆t
)

∣

∣

∣

∣

t2

t1

(2.9)

Upon comparing (2.9) with (2.6), (2.9) implies that physical paths qi(t) are those for which the following term vanishes:

ǫ

∫ t2

t1

(

∂L

∂qi
− d

dt

(

∂L

∂q̇i

))

ηi(t) dt = 0 (2.10)

If we demand that the above equation is satisfied for general infinitesimal variations δqi(t) = ǫ ηi(t), we recover the
Euler-Lagrange equations:

∂L

∂qi
− d

dt

(

∂L

∂q̇i

)

= 0. (2.11)

We note that the Weiss variation (2.6) allows one to identify the Hamiltonian without having to perform a Legendre
transformation (cf. (2.8)). It may be argued that in doing so, one is essentially identifying Nöether currents, but here,
no reference is made to symmetries and no transformation of the time parameter t has been performed; instead, one
displaces the endpoints.2

The Weiss variation also provides a quick way to obtain the Hamilton-Jacobi equation without the machinery of
canonical transformations. The classical action Sc is defined as the value of the action evaluated on solutions to the
Euler-Lagrange equations. If we know the solutions to the Euler-Lagrange equations for a given set of endpoint values
qi1 := qi(t1), q

i
2 := qi(t2), the classical action may be written as a function of the endpoint values and endpoint times:

Sc = Sc(t1, q
i
1; t2, q

i
2). We may hold t1 fixed, and upon comparing the resulting differential of the classical action

dSc = (∂Sc/∂q
i
1) dq

i
1 + (∂Sc/∂q

i
2) dq

i
2 + (∂Sc/∂t2) dt with (2.9), we recover the formula relating pi to the derivatives

of the action and the Hamilton-Jacobi equation:

∂Sc

∂qi1
= pi|t1 (2.12)

∂Sc

∂qi2
= pi|t2 (2.13)

∂Sc

∂t2
= −H

(

∂Sc

∂qi2
, qi2, t2

)

(2.14)

We do not include the derivative ∂Sc/∂t1, since t1 is held fixed. We stress that qi1 is not held fixed, so that we may
construct (2.12); equation (2.12) is important because it ultimately allows us to obtain physical paths qi(t) from
solutions Sc = Sc(q

i
1, q

i
2, t1, t2) to the Hamilton-Jacobi equation (2.14). Given Sc = Sc(q

i
1, q

i
2, t1, t2), equation (2.12)

allows us to write down an algebraic3 equation relating qi2 and t2 to the initial values qi1 and pi|t1 ; note that equation
(2.13) is insufficient4 for this, since it depends on the final momentum pi|t2 , rather than the initial momentum pi|t1 .
If the solutions of the Hamilton-Jacobi equation (2.14) are known for all values of qi1, then we simply solve (2.12) for
qi2 to obtain the function qi2(t2) for a given set of initial values qi1 and pi|t1 .

2 If the action is invariant under time translations and the displacement of the endpoints is chosen so they are consistent with a translation
in time, then one recovers the result that the Hamiltonian is the Nöether current for time translation symmetry.

3 Note that for some function Sc = Sc(qi1, q
i
2
, t2), the left-hand side of formula (2.12) is an explicit function of qi

2
, t2 and qi

1
.

4 Equation (2.13) is used to construct the Hamilton-Jacobi equation (2.14) itself; in particular, it is used to replace the momentum
argument in the Hamiltonian with the derivative ∂Sc/∂qi2 of the action.
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B. Classical field theory

Now consider the Weiss variation for a classical field theory in a region W with spatial boundary, W ⊂ M. Given
a collection of fields ϕA(x), the index A being the field index (it may either serve as a coordinate index, a spinor
index, an index to distinguish fields, or a combination), we begin by considering the following action functional:

S[ϕA] =

∫

W

L (ϕA, ∂µϕ
A, xµ) d4x (2.15)

where L is called the Lagrangian density, which is a function L (XA, Y A
µ , xµ) of XA = ϕA(x), their first derivatives

Y A
µ = ∂µϕ

A, and xµ ∈ R
4. For clarity, we have chosen not to suppress the field and the Greek spacetime/R4 indices

in the arguments of L .5

We may identify one of the variables in R
4, which we will call x0 = t, as a time variable, and the remaining variables

yi are interpreted as spatial variables. The volume element d4x (we absorb any factors of
√

|g| into the Lagrangian
density) may be split into spatial and temporal parts, so that d4x = dt d3y. From the Lagrangian density, one may
obtain the field Lagrangian by isolating the spatial part of the integral, so that:

L[ϕA, ϕ̇A; Σt] =

∫

Σt

L (ϕA, ∂µϕ
A, xµ) d3y (2.16)

where Σt is a hypersurface of constant t, and the semicolon in L[ϕA, ϕ̇A; Σt] denotes that it is a functional of functions
defined on Σt, in particular the functions ϕA|Σt

(y) and ϕ̇A|Σt
(y).

To obtain the variation of the action, we add an infinitesimal function δϕA(x) to ϕA(x). To obtain a general varia-
tion, we infinitesimally distort the region W; the infinitesimally distorted region will be denoted W

′. The boundary
∂W of the region W may be defined parametrically by xµ(y), where yi are coordinates on the boundary surface
∂W. If ∂W′ is the boundary of the region W

′, then we may describe the displaced boundary ∂W′ parametrically by
xµ(y) + δxµ(y), where δxµ is an infinitesimal displacement of the boundary.
The varied action takes the form:

S[ϕA + δϕA] =

∫

W′

L (ϕA + δϕA, ∂µ(ϕ
A + δϕA), xµ) d4x (2.17)

We may obtain an expression for the above valid to first order in δϕA(x) and the boundary displacements δxµ by
performing a Taylor expansion of the Lagrangian density about ϕA:

L (ϕA + δϕA, ∂µ(ϕ
A + δϕA), xµ) =L (ϕA, ∂µϕ

A, xµ) +
∂L

∂ϕA
δϕA +

∂L

∂(∂µϕA)
∂µδϕ

A (2.18)

where the following quantities are defined:

∂L

∂ϕA
:=

∂L (XA, Y A
µ , xµ)

∂XA

∣

∣

∣

∣

XA=ϕA(x), Y A
µ =∂µϕA(x)

∂L

∂(∂µϕA)
:=

∂L (XA, Y A
µ , xµ)

∂Y A
µ

∣

∣

∣

∣

XA=ϕA(x), Y A
µ =∂µϕA(x)

(2.19)

We establish the convention that if L appears without any arguments, it means that L has the following arguments:
L = L (ϕA, ∂µϕ

A, xµ). The first order expansion of the action is:

S[ϕA + δϕA] = S[ϕA] +

∫

W′

(

∂L

∂ϕA
δϕA +

∂L

∂(∂µϕA)
∂µδϕ

A

)

d4x+

∫

∂W

L (ϕA, ∂µϕ
A) δxµ d3Σ̄µ

= S[ϕA] +

∫

W

(

∂L

∂ϕA
δϕA +

∂L

∂(∂µϕA)
∂µδϕ

A

)

d4x+

∫

∂W

(

L +
∂L

∂ϕA
δϕA +

∂L

∂(∂νϕA)
∂νδϕ

A

)

δxµ d3Σ̄µ

(2.20)

5 Also, since we shall later include the metric as an argument in the action functional, we choose not to suppress indices to avoid confusing
the metric with its determinant–the symbol g is reserved for the determinant of the metric.
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FIG. 1. This figure illustrates the deformation of the region W and the infinitesimal displacement of the boundary ∂W to
∂W′ by the displacement vector δxµ.

where d3Σ̄µ is the directed surface element on ∂W. The directed surface element has the explicit expression:

d3Σ̄µ =
1

3!
ǫµαβγ

∂xα

∂yi
∂xβ

∂yj
∂xγ

∂yk
dyi ∧ dyj ∧ dyk (2.21)

where ǫµαβγ is the Levi-Civita symbol. The boundary integrals in (2.20) may be justified by noting that under an

infinitesimal displacement δxµ of the boundary ∂W, the boundary ∂W sweeps out a volume δV ≈ δxµ d3Σ̄µ (see
figure (1)).
The expansion of the action (2.20) may be further simplified by noting that terms containing δϕAδxµ and ∂νδϕ

Aδxµ

are second order in infinitesimal variations. If all variations are proportional to a single infinitesimal parameter, these
terms may be ignored if we only seek the variation of the action to first order in the variations. The first-order
variation of the action is then:

δS = S[ϕA + δϕA]− S[ϕA] =

∫

W

(

∂L

∂ϕA
δϕA +

∂L

∂(∂µϕA)
∂µδϕ

A

)

d4x+

∫

∂W

L δxµ d3Σ̄µ (2.22)

The action must be reworked so that the integral over W has an integrand proportional to δϕA, so that a functional
derivative may be defined. We do this by performing a generalized “integration by parts”; the term containing ∂µδϕ

A

may be converted to a term proportional to δϕA and a divergence term by way of the Leibniz rule:

∂µ

(

∂L

∂(∂µϕA)
δϕA

)

=
∂L

∂(∂µϕA)
∂µδϕ

A + ∂µ

(

∂L

∂(∂µϕA)

)

δϕA (2.23)

The divergence theorem in W ⊂ R
4 takes the following form:

∫

W

∂µW
µ d4x =

∫

∂W

Wµ d3Σ̄µ. (2.24)

which may be used to rewrite (2.22):

δS =

∫

W

(

∂L

∂ϕA
− ∂µ

(

∂L

∂(∂µϕA)

))

δϕA d4x+

∫

∂W

(

L δxµ +
∂L

∂(∂µϕA)
δϕA

)

d3Σ̄µ (2.25)

If we require that δxµ|∂W = 0 and δϕA|∂W = 0, the boundary terms in (2.25) vanish, and the variation of the
action δS is an integral overW with an integrand proportional δϕA. The functional derivative of the action functional
S[ϕA] is defined by the following formula:

δS :=

∫

W

δS

δϕA
δϕA(x) d4x (2.26)

The functional derivative may be identified as:

δS

δϕA
=

∂L

∂ϕA
− ∂µ

(

∂L

∂(∂µϕA)

)

(2.27)
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If we require that the functional derivative vanishes, we obtain the Euler-Lagrange field equations :

∂L

∂ϕA
= ∂µ

(

∂L

∂(∂µϕA)

)

(2.28)

We now write (2.22) in the local Weiss form–we obtain the field theory generalization of the Weiss variation for
mechanics (2.6). To do this, we define the total change in the field values at the boundary:

∆ϕA : = (ϕA + δϕA)|∂W′ − ϕA|∂W
=
(

δϕA + ∂µϕ
A δxµ

)

|∂W
(2.29)

The variation of the action (2.22) in the local Weiss form becomes:

δS :=

∫

W

(

∂L

∂ϕA
− ∂µ

(

∂L

∂(∂µϕA)

))

δϕA d4x+

∫

∂W

(

Pµ
A ∆ϕA − H

µ
ν δxν

)

d3Σ̄µ (2.30)

where we have identified the canonical energy-momentum “tensor” H µ
ν δx

ν (this is sometimes called the Hamiltonian

Complex or Hamiltonian tensor [25, 26]):6

H
µ
ν := Pµ

A ∂νϕ
A − δµν L (2.31)

and the following quantity, which we call the polymomentum:

Pµ
A :=

∂L

∂(∂µϕA)
(2.32)

This result demonstrates that the canonical energy-momentum “tensor” plays a role analogous to the Hamiltonian in
mechanics; it may in fact be used to define a Hamiltonian for the field. The Hamiltonian density may be defined as
the H 0

0 component of the Hamiltonian tensor, which takes the explicit form:

H := H
0
0 = πA ϕ̇A − L (2.33)

where x0 = t, the overdot denotes the time derivatives ϕ̇A := ∂0ϕ
A and the conjugate field momentum πA is defined

as:

πA := P 0
A =

∂L

∂ϕ̇A
. (2.34)

We assume that one may invert the above to obtain an expression for the function ϕ̇A = ϕ̇A(πA, ϕ
A, ∂iϕ

A), and
the lowercase index i (which appears in the partial derivatives ∂i) corresponds to the coordinates yi for surfaces of
constant t.
The Hamiltonian density has a form similar to that of the Hamiltonian in mechanics, and using ϕ̇A = ϕ̇A(πA, ϕ

A, ∂iϕ
A),

can itself be written as a function of πA, ϕ
A and ∂iϕ

A. The Hamiltonian density H is not strictly a Hamiltonian,
since it is defined at a single point in space, and does not include the degrees of freedom present at other points
in space. The Hamiltonian for a field theory is the “sum” of the Hamiltonian densities over all points in space; to
construct the Hamiltonian, we integrate the Hamiltonian density H over a hypersurface Σt of constant t:

H [ϕA, πA; Σt] : =

∫

Σt

H (πA, ϕ
A, ∂iϕ

A, yi, t) d3y =

∫

Σt

(πA ϕ̇A − L ) d3y (2.35)

which may be rewritten as the Legendre transformation of the field Lagrangian:

H [ϕA, πA; Σt] =

∫

Σt

πA ϕ̇A d3y − L[ϕA, ϕ̇A; Σt] (2.36)

As in the case of the field Lagrangian (2.15), the Hamiltonian H [ϕA, πA; Σt] is a functional of functions defined on
Σt, in particular the functions ϕA|Σt

(y) and πA|Σt
(y).

6 If we work in Minkowski spacetime and choose δxµ so that it corresponds to a translation in spacetime, then we recover the well-known
result that H µ

ν δxν is the Nöether current for spacetime translation symmetry.
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We may now obtain the Weiss form of the variation. To do this, we choose the boundary to consist of two surfaces
of constant t, Σt1 (for t = t1) and Σt2 (for t = t2), and a surface at spatial infinity, which we call the spatial boundary.
We require vacuum boundary conditions H µ

ν = 0 at the spatial boundary, and set δxµ = δµ0 ∆t. The variation of
the field action in Weiss form is then:

δS :=

∫

W

(

∂L

∂ϕA
− ∂µ

(

∂L

∂(∂µϕA)

))

δϕA d4x+

(
∫

Σt

(

P 0
A ∆ϕA

)

d3y −H [ϕA, πA; Σt] ∆t

)∣

∣

∣

∣

t2

t1

(2.37)

We have shown how the Weiss variation may be carried out in a generic classical field theory. In the next several
sections, we lay the groundwork and carry out the Weiss variation for the action of GR (the gravitational action). The
GHY boundary term in the gravitational action will introduce additional technical elements to the Weiss variation,
so the results in this current section cannot be directly applied to the gravitational action. On the other hand, some
of the features of the Weiss variation described in this section will be useful for understanding features of the Weiss
variation for the gravitational action.

III. GEOMETRY, HYPERSURFACES, AND VARIATION OF AREA FORMULAS

A. Geometry

We begin by presenting our definitions for the Riemann curvature tensor, Ricci tensor, and Ricci scalar:

Rµ
ναβ := ∂αΓ

µ
βν − ∂βΓ

µ
αν + Γµ

ασ Γσ
βν − Γµ

βσ Γσ
αν . (3.1)

Rµν := Rσ
µσν (3.2)

R := gµν Rµν (3.3)

which are defined for a Lorentzian manifold M endowed with a metric tensor gµν , and a metric-compatible connection
∇µ with connection coefficients (Christoffel symbols) Γα

µν :

Γα
µν =

1

2
gασ(∂µgσν + ∂νgµσ − ∂σgµν). (3.4)

B. Foliations and hypersurfaces

It is necessary to discuss the formalism used to describe the geometry of hypersurfaces embedded in 4d bulk spaces,
since we take an approach that is slightly different than that present in much of the literature. That literature makes
use of the abstract index notation [13, 27], or coordinate bases on hypersurfaces [14, 25] ([20] is an exception, as
some key results are worked out in the coordinate basis). In our approach, we obtain many of our results in the
bulk coordinates, which still requires that we assume the existence of a foliation. We will indicate which results are
foliation dependent, and which are not.
Place a foliation on M, with non-null hypersurfaces ΣS distinguished by values of some real parameter S. More

precisely, the foliation may be defined by an appropriate foliation function φ(x), with a hypersurface ΣS being a level
surface defined by the constraint: φ(x) = S. We define a normal vector field:

n
µ(x) := gµν ∇νφ(x) (3.5)

From the above, we may define a unit normal vector field nµ(x) for the foliation:

nµ = ε α n
µ (3.6)

where ε = +1 if the unit normal vector is spacelike, and ε = −1 if the unit normal vector is timelike. The quantity ε
ensures that the unit normal vector nµ points in the direction of increasing φ.7 The quantity α = α(x) is the “lapse
function”, defined as:8

α :=
1

|nµ n
µ|1/2 (3.7)

7 Note that if nµ is timelike, it points in the direction of decreasing φ.
8 This is equivalent to the lapse function in the ADM formalism.



9

The unit normal vector field nµ(x) allows us to construct the induced metric/projection tensor:

γµν := gµν − ε nµnν (3.8)

It is not difficult to show that if coordinates yi are placed on the hypersurface ΣS , γµν may be expressed in basis of
the tangent vectors ∂/∂yi to the hypersurface ΣS . To do this, we define the components Eµ

i of the tangent vectors in
the following way:

∂

∂yi
= Eµ

i

∂

∂xµ
Eµ

i :=
∂xµ

∂yi
(3.9)

We then write the induced metric γµν in terms of the basis vectors:

γij = Eµ
i Eν

j γµν = Eµ
i Eν

j gµν (3.10)

We use the above to define the metric-compatible, torsion-free covariant derivative Di for the hypersurface ΣS in
the usual manner, with connection coefficients Γ̄i

jk being the Christoffel symbols corresponding to γij . In the bulk
coordinate basis, the metric-compatible, torsion-free covariant derivative for a tensor T µ1...µr

ν1...νs with indices tangent
to the hypersurface ΣS may be written as:

DσT
µ1...µr

ν1...νs =
(

γµ1

α1
...γµr

αr

) (

γβ1

ν1 ...γ
βs
νs

)

γρ
σ ∇ρT

α1...αr
β1...βs

(3.11)

With some work, one may show that the above definition is equivalent to the connection Di with the definition
Γ̄i
jk := Eσ

j E
i
µ ∇σE

µ
k for the connection coefficients. The covariant derivative may be used to construct the intrinsic

Riemann curvature tensor R̄α
βµν of the hypersurface ΣS from the commutator of the derivative Dµ defined above:

[Dµ, Dν ]X
α = R̄α

βµν Xβ (3.12)

for a vectorXµ tangent to the hypersurface ΣS . It should be straightforward to infer that R̄α
βµν = Eα

a E
b
βE

i
µE

j
ν R̄

a
bij ,

where R̄a
bij is given by the following expression:

R̄a
bij = ∂aΓ̄

a
jb − ∂jΓ̄

a
ib + Γ̄a

is Γ̄
s
jb − Γ̄a

js Γ̄
s
ib. (3.13)

It is natural at this point to ask how the hypersurface curvature tensor R̄α
βµν is related to the curvature tensor

Rα
βµν in the bulk manifold M. The derivation below (and those of Appendix A) is well known, but we carry it

through explicitly to emphasize the importance of the sign, ε. Before we can discuss this relationship, we must first
introduce another notion of curvature, the extrinsic curvature.
The extrinsic curvature tensor Kµν of a hypersurface ΣS may be defined by the following expression:

Kµν X
µ Y ν = −nν X

µ ∇µY
ν (3.14)

for two vectors Xµ and Y µ tangent to ΣS : X
µ nµ = 0 and Y µ nµ = 0. This definition is independent of the foliation,

and depends only on the manner in which the surface ΣS is embedded in the bulk manifold M and does not depend
on any other surface in the foliation. On the other hand, if a foliation exists, the extrinsic curvature tensor may be
written in three different ways:

Kµν =
1

2
£nγµν = γσ

µγ
τ
µ∇σnτ = ∇µnν − ε nµ aν (3.15)

where £n is the Lie derivative, which acts on γµν in the following way:

£nγµν = nα∂αγµν + γαν∂µn
α + γµα∂νn

α = nα∇αγµν + γαν∇µn
α + γµα∇νn

α (3.16)

The last equality in (3.15) makes use of the acceleration aµ for the integral curves of the unit normal vector field,
which may be written as:

aν = nµ ∇µnν = −ε Dν(lnα) (3.17)

where the last equality in the above comes from the torsion-free property of the covariant derivative ∇α.
The trace of the extrinsic curvature tensor, the mean curvature, is given by the following expression:

K := γµν Kµν = gµν Kµν = ∇αn
α (3.18)
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where the second equality comes from the fact that Kµνn
ν = 0, and the last equality comes from the properties

γµν γα
µ = γαν and nν∇αnν = 0.

There are three formulas which relate the bulk Riemann curvature tensor Rµ
ναβ for M to the extrinsic curvature

Kµν of a hypersurface Σ, and the Riemann tensor R̄µ
ναβ for the surface Σ. The derivation of these formulas is

provided in Appendix A.9 The first is the Gauss equation:

γρ
λγ

τ
σγ

α
µγ

β
ν Rλ

ταβ = R̄ρ
σµν + ε(Kρ

ν Kµσ −Kρ
µ Kνσ) (3.19)

the second is the Codazzi equation:

γτ
κγ

µ
αγ

ν
β Rκ

εµν nε = DαKβ
τ −DβKα

τ (3.20)

and the third equation is the Ricci equation:

£nKµν = −Rαµβν n
αnβ +KµαKν

α − ε aµaν +Dµaν

= −Rαµβν n
αnβ +KµαKν

α − ε

α
DµDνα

(3.21)

Note that the right hand side of (3.21) is tangent to the hypersurface; if we contract any index with the unit normal
vector, the right hand side vanishes. While the Gauss and Codazzi equations do not explicitly refer to the foliation,
the Ricci equation depends explicitly on the foliation through the lapse function α, and via the Lie derivative of the
extrinsic curvature. Finally, we present the contracted forms of the Gauss and Codazzi equations:

R− 2 ε nµ nν Rµν = R̄+ ε(Kµν Kµν −K2) (3.22)

γν
β Rµν nµ = Dα

(

Kβ
α − γα

β K
)

(3.23)

which are typically used to obtain the 3+1 split of the Einstein field equations.

C. The variation of area formulas

We now introduce the variation of area formulas, which describe the change in the volume (or “area”) of a hyper-
surface under infinitesimal displacements. Define the volume A for some region Q of a hypersurface ΣS (Q ⊂ ΣS) to
be the following:

A :=

∫

Q

dΣ (3.24)

where dΣ is the hypersurface volume element, which may be written as (B5):

dΣ = ε
√

|γ| d3y (3.25)

with γ := det(γij). Now consider an infinitesimal displacement of the surface Q. If the surface Q is parameterized by
the functions xµ(y) (yi being coordinates on Q), then we may characterize the displacement of the surface by adding
δxµ(y), so that the parameterization of the displaced surface may be described by the functions:

x′µ(y) = xµ(y) + δxµ(y). (3.26)

It is helpful to decompose the displacement δxµ(y) in the following manner:

δxµ = δa nµ + δbµ

δa := ε δxαnα

δbµ := γµ
α δxα

(3.27)

9 Again, these derivations are well-known. We carry it through explicitly to emphasize the importance of the sign, ε.
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Under the displacement δxµ of the boundary surface, the first variation of area formula may be written as [15] (see
Appendix B for the derivation):

δA =

∫

Q

δa K dΣ +

∫

∂Q

δbi dσi (3.28)

where dσi is the directed surface element on ∂Q. Explicitly, we may write:

δA =

∫

Q

δxµnµ K
√

|γ| d3y +
∫

∂Q

δxν γµ
ν

(

∂yi

∂xµ

)

ri εr
√

det|σAB |d2z (3.29)

where σAB is the induced metric on ∂Q with respect to coordinates zA, and ri is the unit normal to ∂Q tangent to
Q, with εr = riri = ±1.
To obtain the second variation of area formula, we introduce a displacement δx̃µ which is in general independent

of the displacement δxµ. We decompose δx̃µ in a manner similar to the decomposition in (3.27):

δx̃µ = δã nµ + δb̃µ

δã := ε δx̃αnα

δb̃µ := γµ
α δx̃α

(3.30)

The second variation of area is the change in δA with respect to the displacement δx̃µ (see Appendix B for the
derivation):

δx̃ (δxA) =

∫

Q

(

δa δã ε(1/2)
(

R̄+ ε(K2 −Kµν K
µν)−R

)

+Dj(δb̃
j Diδb

i + δa δb̃j K) + δã Diδb
i K

)

dΣ (3.31)

where δx denotes a variation with respect to the displacement δxµ, and δx̃ denotes a variation with respect to the
displacement δx̃µ. If we choose δx̃µ = δxµ, the the second variation of area formula reduces to:

δ2A =

∫

Q

(

(δa)2 ε(1/2)
(

R̄+ ε(K2 −Kµν Kµν)− R
)

+Dj(δb
j Diδb

i + δa δbj K) + δa Diδb
i K

)

dΣ (3.32)

Note that both of these formulas for the second variation of area depend only on the properties of a hypersurface and
the way it is embedded in the bulk manifold; they are foliation-independent.
The usefulness of the variation of area formulas will become apparent when we perform the variation of the Gravi-

tational action. In particular, the GHY boundary term is a special case of the first variation of area (3.29) (for δa = ε
and δbi = 0) so that the variation of the GHY term may be written in terms of the second variation of area (3.31).

IV. VARIATION OF THE GRAVITATIONAL ACTION: SPACETIMES WTH NO SPATIAL

BOUNDARY

As stated in the introduction, the reader familiar with the ADM canonical formalism [14, 19, 20] should be able
to infer the Weiss variation of the gravitational action. In this section, we explicitly derive the Weiss variation of
the gravitational action in a geometric manner by making use of the first and second variation of area formulas. To
simplify the derivation, we first consider the case of spacetimes without spatial boundary.

A. The gravitational action

To simplify the derivation, we consider a globally hyperbolic spacetime M that is spatially compact. By this, we
mean that M has the topology R×Σ, where Σ is a three dimensional manifold without boundary. Let U ⊂ M be a
region of spacetime with the boundary ∂U = ΣI ∪ ΣF consisting of the smooth, boundaryless spacelike surfaces ΣI

and ΣF , with ΣI being a surface at early time and ΣF being a surface at late time. The gravitational action on U is
given by:

SGR[g
µν ] := SEH [gµν ] + SGHY (4.1)
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where SEH [gµν ] is the Einstein-Hilbert action:

SEH [gµν ] :=
1

2κ

∫

U

R
√

|g| d4x (4.2)

and SGHY is the GHY Boundary term:

SGHY :=
1

κ

∫

∂U

K ε
√

|γ| d3y. (4.3)

At this point, we may recognize the GHY boundary term SGHY as a variation of area for the choice δa = 1 and
δbi = 0 (cf. equation (3.27)). This allows one to write the variation of SGHY under boundary displacements in terms
of the second variation of area formula. This is the key observation that allows us to obtain the variation of SGHY

under boundary displacements in a geometric manner.

B. Variation of the Einstein-Hilbert action

We now review the variation of the Einstein-Hilbert action. To obtain the variation of SEH [gµν ], we begin by adding
an infinitesimal, symmetric, rank-2 tensor δgµν to the inverse metric gµν . It is convenient to define the following:

g̃µν := gµν + δgµν

g̃µν := gµν + δgµν
(4.4)

where δgµν is defined by the following condition:

g̃µσ g̃σν = (gµσ + δgµσ)(gσν + δgσν) = δµν
⇒ gσν δgµσ + gµσ δgσν + δgµσ δgσν = 0

(4.5)

To first order in δgµν and δgµν , we obtain the following result:

gσν δgµσ + gµσ δgσν ≈ 0 ⇒ δgµν = −gσµ gτν δg
στ (4.6)

Given the above expressions, we can obtain the Taylor expansion of the volume element
√

|g| to first order in δgµν :

(
√

|g|)|gµν+δgµν
= (
√

|g|) |gµν
+

(

∂
√

|g|
∂gµν

)

∣

∣

∣

∣

gµν

δgµν +O((δgµν)
2) (4.7)

Using the Jacobi formula for the derivative of the determinant, we obtain the following:

∂g

∂s
= g gβα

∂gαβ
∂s

⇒ ∂
√

|g|
∂gµν

=
sgn(g)

2
√

|g|
∂g

∂gµν
=

|g| gβα
2
√

|g|
∂gαβ
∂gµν

=
1

2

√

|g| gνµ (4.8)

where sgn(g) = g/|g| picks10 out the sign of g; sgn(g) = −1 for a 4 dimensional Lorentzian spacetime. To simplify
our expressions, we provide the following definition and expressions for a quantity which we call the variation of the
volume element as:

δ
√

|g| :=
(

∂
√

|g|
∂gµν

)

∣

∣

∣

∣

gµν

δgµν =
1

2

√

|g| gνµ δgµν = −1

2

√

|g| gµν δgµν (4.9)

Where (4.6) has been used in the last equality. To first order, (4.7) becomes:

(
√

|g|)|gµν+δgµν
= (
√

|g|) |gµν
− 1

2

√

|g| gµν δgµν +O((δgµν)
2) (4.10)

10 Alternately, we may rewrite this as |g| = g sgn(g).
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We now write the varied Einstein-Hilbert action SEH [gµν ] to first order in the variations of the inverse metric δgµν

and boundary displacements δxµ:

SEH [gµν + δgµν ] =
1

2κ

∫

U′

(R
√

|g|)|gµν+δgµν
d4x

=
1

2κ

∫

U

(

R
√

|g|+ δR
√

|g|+R δ
√

|g|+O((δgµν )2)
)

d4x+
1

2κ

∫

∂U

R δxµ d3Σ̄µ

= SEH [gµν ] +
1

2κ

∫

U

(

δR
√

|g|+R δ
√

|g|+O((δgµν)2)
)

d4x+
1

2κ

∫

∂U

R δxµ d3Σ̄µ

(4.11)

where the covariant directed surface element d3Σ̄µ is given by the following expression:

d3Σ̄µ := ε nµ

√

|γ| d3y (4.12)

where nµ is the unit normal vector to the boundary ∂U, ε = nµ nν = ±1, yi are coordinates on ∂U, and γ is the
determinant of the induced metric γij of the boundary ∂U. Note that the variation of the connection coefficients,
δΓα

µν , being defined as a difference between two different connection coefficients (one constructed using the metric gµν
and the other constructed from the metric g̃µν), transforms as a tensor. One may use this to show that the first order
variation of the Ricci scalar is:

δR := g̃µν R̃µν − gµν Rµν

= ∇µ(g
αβδΓµ

βα − gαµδΓβ
βα) +Rµν δgµν

= ∇µ((g
αβ δµν − gαµ δβν ) δΓ

ν
βα) +Rµν δgµν

(4.13)

where g̃αβ is the inverse of the metric g̃αβ := gαβ + δgαβ , and R̃αβ is the Ricci tensor calculated from g̃αβ.
The variation of the action, to first order in the variations of the inverse metric δgµν , is given by the following

expression:

δSEH := SEH [gµν + δgµν ]− SEH [gµν ]

=
1

2κ

∫

U

(

∇µ((g
αβ δµν − gαµ δβν ) δΓ

ν
βα) +Rµν δgµν − 1

2
R gµν δgµν

)

√

|g| d4x+
1

2κ

∫

∂U

R δxµ d3Σ̄µ

(4.14)

Upon applying the covariant divergence theorem, (4.14) becomes:

δSEH =
1

2κ

∫

U

Gµν δg
µν
√

|g| d4x+
1

2κ

∫

∂U

(

(gαβ δµν − gαµ δβν ) δΓ
ν
βα +R δxµ

)

d3Σ̄µ (4.15)

where Gµν := Rµν − 1
2 Rgµν is the Einstein tensor.

We now attach a geometric meaning to the boundary term; in doing so, we motivate the use of the GHY boundary
term in the gravitational action. First, we place foliations near the boundary surfaces ΣI and ΣF (the early time and
late time spacelike boundary surfaces) such that the boundary surfaces are contained in the foliation. This allows
us to define a unit normal vector field nµ(x) near the boundary surface, so that the covariant derivatives of the unit
normal vector field nµ are well-defined. We may choose a coordinate system adapted to the foliation, so that the
foliation surfaces correspond to the value of a coordinate r. In the ADM formalism, the unit normal vector and its
dual may be written in terms of a lapse function α = |g00|−1/2 and a shift vector βi = −ε α2 g0i:

[nµ] = (1/α, [−βi/α]) = (1/α,−β1/α,−β2/α,−β3/α)

[nµ] = (ε α, 0, 0, 0)
(4.16)

Though the respective lapse and shift, α and βi, form parts of the bulk inverse metric tensor gµν , they are not physical
degrees of freedom–specifying α and βi is equivalent to specifying the coordinate system on the spacetime manifold.
We may take advantage of this, and impose a coordinate/gauge condition in the neighborhood of the boundary
surfaces ΣI and ΣF so that α and βi are unchanged under the variation. Furthermore, we may impose the gauge
conditions ∂µn

µ = 0 and ∂µα = 0, and require that the variations preserve these conditions. From equation (4.16),
the requirement that these coordinate conditions be enforced when the variation is carried out may be summarized
by following statements:

δnµ = 0

δnµ = 0
(4.17)
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which is equivalent to requiring that δα = 0 and δβi = 0.
We turn to the mean curvature, which may be written in the following manner:

K = ∇νn
ν = ∂νn

ν + Γν
νσn

σ

= gαβ ∇αnβ = gαβ ∂αnβ − gαβ Γν
αβnν

(4.18)

Under the coordinate conditions (4.17), the normal vector and its partial derivatives are unchanged under the variation,
so that the variation of the mean curvature takes the form:

δK = δΓν
νσn

σ

= −δgαβ Γν
αβnν − gαβ δΓν

αβnν

(4.19)

We stress that the above formula is only valid if the condition (4.17) is satisfied, which is equivalent to requirement
that the coordinate/gauge condition ∂µn

µ = 0 and ∂µα = 0 is preserved by the variation. Note that if ∂µα = 0, then
aµ = −ε Dν(lnα) = 0 (recall (3.17)), the extrinsic curvature tensor, Kαβ takes the form (equation (3.15)):

Kαβ = ∇αnβ = −Γν
αβ nν (4.20)

With these conditions in mind, we now examine the boundary terms in the variation of the action (4.15), which
takes the form:

δ∂SEH :=
1

2κ

∫

∂U

(

(gαβ δµν − gαµ δβν ) δΓ
ν
βα +R δxµ

)

ε nµ

√

|γ| d3y

=
ε

2κ

∫

∂U

(

gαβ nν δΓν
βα − nα δΓσ

σα +R δxµ nµ

)
√

|γ| d3y
(4.21)

where we have made use of equation (4.12) for d3Σ̄µ, and use the notation δ∂S to pick out boundary terms in the
variation δS. The boundary terms (4.21) can be rewritten:

δ∂SEH =
ε

2κ

∫

∂U

(

−δgαβ Γν
αβnν − 2 δK +R δxµ nµ

)
√

|γ| d3y

=
ε

2κ

∫

∂U

(

δgαβ Kαβ − 2 δK +R δxµ nµ

)
√

|γ| d3y

=
ε

2κ

∫

∂U

(

δγαβ Kαβ − 2 δK +R δxµ nµ

)
√

|γ| d3y

(4.22)

where the last equality comes from the definition of the projection tensor γαβ := gαβ − ε nα nβ and the fact that
under the gauge condition, the unit normal vectors nµ are held fixed at the boundaries.
If the boundaries are held fixed (if we set δxµ = 0) and if all the components of the metric tensor are held fixed at

the boundary so that δgµν |∂U = 0, the boundary terms reduce to:

δ∂SEH = − ε

κ

∫

∂U

δK
√

|γ| d3y (4.23)

This shows that if the metric is held fixed at the boundary, and the boundary itself is also held fixed (no boundary
displacements), the variation of the GHY boundary term δSGHY cancels out the remaining boundary term in δ∂SEH .

C. Variation of the GHY boundary term: No boundary displacements

One might infer from equation (4.23) the following expression for the variation of the GHY boundary term:

δSGHY =
ε

κ

∫

∂U

δK
√

|γ| d3y (4.24)

under the condition that the induced metric γµν and its inverse γµν are held fixed (δγµν = 0 and δγµν = 0). However,
the above expression for δSGHY will not suffice for the Weiss variation, since the Weiss variation will include variations
in γµν , so that δγµν 6= 0 and δγµν 6= 0.
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In this section, we derive the variation of the GHY boundary term for the case where the induced metric (of the
boundary ∂U) γij and its inverse γij is allowed to vary. We ignore boundary displacements (the boundary ∂U is
held fixed with respect to the coordinates on the spacetime manifold M), and compute the variation δSGHY due to
changes in the induced metric γµν on U; the resulting variation will be denoted by δgSGHY . The variation δgSGHY

takes the form:

δgSGHY =
ε

κ

∫

∂U

(

K ′

√

|γ′| −K
√

|γ|
)

d3y (4.25)

To first order, we may make use of (4.8) to write the volume element
√

|γ′| in terms of the induced metric γij (which
depends on the bulk metric gµν) and its variation δγij :

√

|γ′| =
√

|γ| − 1

2

√

|γ| γij δγij . (4.26)

Next, we expand K ′ in the following manner:

K ′ = K + δK (4.27)

where δK is given by (4.19) (again, we impose the gauge condition: ∂µn
ν = 0 and ∂µα = 0). To first order, the

variation δgSGHY takes the form:

δgSGHY =
ε

2κ

∫

∂U

(

2 δK −K γij δγ
ij
)
√

|γ| d3y

=
ε

2κ

∫

∂U

(2 δK −K γµν δγµν)
√

|γ| d3y
(4.28)

where the last equality comes from making use of the fact that the induced metric γij and projection tensor γµν =
gµν − ε nµ nν are related by a change of basis.
Note the differences between (4.28) for δgSGHY and (4.22) for δ∂SEH . If the boundary ∂U and its inverse induced

metric γµν are held fixed (δxµ = 0 and δγµν = 0), then δgSGHY and δ∂SEH cancel. However, if γµν is allowed to
vary (δγµν 6= 0), then δgSGHY and δ∂SEH do not cancel.

D. The Weiss variation

We now discuss the variation induced by the displacement of the boundary ∂U, which we denote by δxSGHY .
Earlier, it was remarked after equation (4.3) that SGHY may be interpreted as the first variation of area (3.28) for
the choices δa = 1 and δbi = 0. In particular, compare the following expressions (equations (3.28) and (4.3)):

δA =

∫

Q

δa K dΣ +

∫

∂Q

δbi dσi =

∫

Q

K
√

|γ| d3y

SGHY =
1

κ

∫

∂U

K ε
√

|γ| d3y
(4.29)

where we have set11 δa = 1 and δbi = 0 in the expression for δA (we use Q to denote general 3d surfaces in M). The
generalized second variation of area formula (3.31) describes the change in the first variation of area for a hypersurface
under an arbitrary displacement of the hypersurface. Using the generalized second variation of area formula (3.31),
we obtain the following result for the variation of δA (as given in (4.29)) under a displacement12 δxµ:

δx(δA) = δx

∫

Q

K
√

|γ| d3y

=
1

2

∫

Q

δxµ nµ

[

3R+ ε(K2 −Kαβ Kαβ)−R
]
√

|γ| d3y + ε

∫

∂Q

K δb̃i ri
√

|σ|d2z
(4.30)

11 We may also get rid of the boundary integral over ∂Q by requiring that Q be boundaryless. For instance, if Q = ∂U, then this is indeed
the case by the boundary of a boundary principle: ∂∂ = 0.

12 The displacement δxµ corresponds to the second variation (3.30) in the variation of area formulas.
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where δb̃i = Ei
µ δx

µ, ri is the unit normal vector to ∂Q, and
√

|σ|d2z is the volume element for ∂Q. If Q has no
boundary, then the boundary integral vanishes; this is indeed the case for the surfaces ΣI and ΣF that form ∂U. We
may make use of the general expression (4.30) to obtain the variation of the GHY term under displacements of the
boundary ∂U:

κ δxSGHY = δx

∫

∂U

K ε
√

|γ| d3y =
ε

2

∫

∂U

δxµ nµ

[

3R+ ε(K2 −Kαβ Kαβ)−R
]
√

|γ| d3y (4.31)

The total variation of the GHY boundary term takes the following form:

δSGHY = δgSGHY + δxSGHY

=
ε

2κ

∫

∂U

(2 δK −K γµν δγµν)
√

|γ| d3y +
ε

2κ

∫

∂U

δxµ nµ

[

3R+ ε(K2 −Kαβ Kαβ)−R
]
√

|γ| d3y (4.32)

We now combine the expression for δSGHY (4.32) with δ∂SEH in (4.22) to obtain the full boundary term for δSGR,
which we denote δ∂SGR:

13

δ∂SGR := δ∂SEH + δSGHY

=
ε

2κ

∫

∂U

(

δγαβ Kαβ − 2 δK +R δxµ nµ

)
√

|γ| d3y +
ε

2κ

∫

∂U

(2 δK −K γµν δγµν)
√

|γ| d3y

+
ε

2κ

∫

∂U

δxµ nµ

[

3R + ε(K2 −Kαβ Kαβ)−R
]
√

|γ| d3y

=
ε

2κ

∫

∂U

(

(Kµν −K γµν)δγ
µν + δxµ nµ(

3R+ ε(K2 −Kαβ Kαβ))

)

√

|γ| d3y

(4.33)

The full variation of the gravitational action takes the form:

δSGR =
1

2κ

∫

U

Gµν δg
µν
√

|g| d4x+
ε

2κ

∫

∂U

((Kµν −K γµν) δγ
µν)
√

|γ| d3y

+
ε

2κ

∫

∂U

δxµ nµ(
3R+ ε(K2 −Kαβ Kαβ))

√

|γ| d3y
(4.34)

At this point, we note that if the boundary ∂U is held fixed, then the projection tensor/induced metric γµν must be
held fixed in order to obtain a functional derivative of SGR[g

µν ] (see [12]); this suggests that the induced metric for
hypersurfaces in a foliation of spacetime forms the degrees of freedom for the gravitational field.
To convert the above result (4.34) to the Weiss form, we define the total change in γµν and provide a first-order

expression:

∆γµν := γµν |∂U′ − γµν |∂U
≈ δγµν +£δxαγµν (4.35)

where δxµ is the displacement for the boundary. To simplify calculations, we decompose the displacement δxµ in the
following manner:14

δxµ := ã nµ + b̃µ

ã := ε δxµ nµ

b̃µ := γµ
ν δxν = (δµν − ε nµ nν)δx

ν

(4.36)

The Lie derivative of the induced metric with respect to δxµ takes the following form:

£δxαγµν = δxα∇αγ
µν − γαν ∇αδx

µ − γµα ∇αδx
ν

= ã£nγ
µν +£b̃γ

µν + (nµ γαν∇αã+ nν γµα∇αã)
(4.37)

13 Recall that we use the notation δ∂S to mean the boundary terms that appear in the variation δS.
14 Again, we remind the reader that the displacement δxµ corresponds to the second variation (3.30) in the variation of area formulas.
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We combine (4.35) and (4.37) to obtain the expression:

δγµν = ∆γµν −£δxαγµν

= ∆γµν − ã£nγ
µν −£b̃γ

µν − (nµ γαν∇αã+ nν γµα∇αã)
(4.38)

Contracting with Kµν −K γµν , we obtain:

(Kµν −K γµν)δγ
µν = (Kµν −K γµν)(∆γµν − ã£nγ

µν −£b̃γ
µν)

= (Kµν −K γµν)(∆γµν + 2ã Kµν)− (Kij −K γij)£b̃γ
ij

= (Kµν −K γµν)∆γµν + 2ã (Kij K
ij −K2)− (Kij −K γij)£b̃γ

ij

(4.39)

where we have used (Kµν − K γµν)n
µ = 0 in the first line (since both Kµν and γµν are both tangent to ∂U), and

we have used the expression Kµν = − 1
2γ

µ
αγ

ν
β£nγ

αβ in the second line. A change of basis has been performed in the
third line, and the last term is justified by the gauge we have chosen, in which the boundary is a surface of a constant
value of some coordinate r; this allows us to rewrite the Lie derivative in terms of the coordinate basis yi.
The boundary term becomes:

δ∂SGR =
ε

2κ

∫

∂U

(

(Kµν −K γµν)∆γµν + 2ε δxµ nµ (Kij K
ij −K2)− (Kij −K γij)£b̃γ

ij

+ δxµ nµ(
3R + ε(K2 −Kij K

ij))

)

√

|γ| d3y

=
ε

2κ

∫

∂U

(

(Kµν −K γµν)∆γµν − (Kij −K γij)£b̃γ
ij + δxµ nµ(

3R− ε(K2 −Kij K
ij))

)

√

|γ| d3y

(4.40)

We may use the formula15 £b̃γ
ij = −Dib̃j −Dj b̃i with the divergence theorem to rewrite the term containing £b̃γ

ij

(this result will be used later on):

−
∫

Σ

(

(Kij −K γij)£b̃γ
ij

)

√

|γ| d3y = 2

∫

Σ

(

(Kij −K γij)D
ib̃j
)

√

|γ| d3y

= −2

∫

Σ

(

Di(Kij −K γij)b̃
j

)

√

|γ| d3y + 2

∫

∂Σ

(

(Kij −K γij)b̃
j

)

ri
√

|σ| d2z
(4.41)

where ri is a vector tangent to a hypersurface Σ that forms the unit normal to a 2-surface ∂Σ, and
√

|σ| d2z is the
volume element for ∂Σ. Since the surfaces in ∂U have no boundary, the second term vanishes, so that:

δ∂SGR =
ε

2κ

∫

∂U

(

(Kµν −K γµν)∆γµν − 2Di(Kij −K γij) b̃
j + δxµ nµ(

3R− ε(K2 −Kij K
ij))

)

√

|γ| d3y
(4.42)

At this point, we note that if γµν form the degrees of freedom for the gravitational field, then we may define the
quantity Pµν to be its conjugate momentum:

Pµν :=
ε

2κ
pµν

√

|γ| (4.43)

where:

pµν := Kµν −K γµν (4.44)

It is straightforward to invert these formulas to obtain the following expression for Kµν :

Kµν = −2 κ
1√
γ

(

Pµν +
1

2
γµν γ

αβ Pαβ

)

(4.45)

15 Note that the covariant derivative Di := γijDj on ∂U satisfies metric compatibility: Dkγij = 0.
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Finally, we write out the full variation of the gravitational action in Weiss form:

δSGR =
1

2κ

∫

U

Gµν δg
µν
√

|g| d4x+
ε

2κ

∫

∂U

(

pµν ∆γµν +
[

nµ

(

3R− ε(K2 −Kij K
ij)
)

− 2Dαp
αβ γµβ

]

δxµ

)

√

|γ| d3y
(4.46)

where we reintroduce the definition b̃µ = γµ
ν δxν . Upon comparing the Weiss form of the variation (4.46) with that for

a generic classical field theory (2.30), we may identify the canonical energy-momentum “tensor” for the gravitational
field (valid only when evaluated at ∂U):

H
µ
ν =

(

[

(3R− ε(K2 −Kij K
ij)) nν − 2Dαp

α
ν

]

nµ
√

|γ|
)

|∂U (4.47)

We recognize the terms appearing in H µ
ν as the geometrical parts of the momentum and Hamiltonian constraints:

Dαp
α
ν = Dα (Kα

ν − γα
ν K) = κ γµ

α Tµν n
ν (4.48)

− ε(3R− ε(K2 −Kij K
ij)) = 2κ Tµν n

µ nν (4.49)

where Tµν is the energy-momentum tensor (the source term for the Einstein field equations), which vanishes in the
absence of matter. If the above constraints are satisfied (as they should for solutions of the vacuum Einstein field
equations), what we would regard as the canonical energy-momentum tensor for the gravitational field vanishes. In
the literature, this is often attributed to the reparameterization invariance of GR;16 however, the canonical energy-
momentum tensor vanishes identically for a reparameterization-invariant theory [26], while the constraints (4.48) and
(4.49) do not. This is because the gravitational action SGR is not written in a reparameterization-invariant form;
one may easily verify that the Lagrangian density does not transform as a reparameterization-invariant Lagrangian
density. Furthermore, the presence of the Hamiltonian and momentum constraints suggest that the variables we have
chosen to describe the gravitational field (the 10 components of the metric tensor gµν) are greater in number than
the physical degrees of freedom for the gravitational field; it is well-known that there are only two physical degrees of
freedom.17 If one can identify the physical degrees of freedom (which we define as those that identically satisfy the
constraints (4.48) and (4.49)), the gravitational action written in terms of the physical degrees of freedom will have a
canonical energy momentum tensor that vanishes identically for pure gravity. Thus, if the physical degrees of freedom
for the gravitational field are identified,18 one may expect the resulting action to be reparameterization invariant.
We now attempt to construct a Hamilton-Jacobi formulation for gravity. We begin by simplifying δSGR (4.46); if

we choose the variation δxµ to be proportional to the unit normal vector nµ:

δxµ = nµ ∆τ(y), (4.50)

we may interpret ∆τ(y) as the amount (measured in proper time) by which the boundary ∂U is displaced in the
normal direction. Upon performing a change of basis to write Pµν ∆γµν = Pij ∆γij , the variation (4.46) simplifies to:

δSGR =
1

2κ

∫

U

Gµν δg
µν
√

|g| d4x+

∫

∂U

(

Pij ∆γij − Hgf ∆τ

)

d3y (4.51)

where we make use of γµβ n
µ = 0, and we define the “gauge fixed” Hamiltonian density:

Hgf (Pij , γ
ij) := − 1

2κ

[

3R− ε (K2 −Kij K
ij)

]

√

|γ| (4.52)

where Kij depends on Pij via formula (4.45). This coincides with the ADM Hamiltonian19 in Gaussian normal
coordinates, where the spacetime metric gµν and its inverse gµν satisfies the following on a surface Σt of constant
x0 = t:

g00|Σt
= ε g00|Σt

= ε

g0i|Σt
= 0 g0i|Σt

= 0

gij |Σt
= γij gij |Σt

= γij

(4.53)

16 See, for instance, [28], which contains a detailed discussion of reparameterization invariance in GR. A more general discussion of
reparameterization-invariance may be found in [26]; one should keep in mind the distinction between reparameterization invariance
and the invariance of the action under coordinate transformations. The difference is that under coordinate transformations, tensors
pick up transformation matrices while reparameterizations do not generate transformation matrices; reparameterizations only affect the
functional form of the fields, so that their effects only show up in the derivatives of the field.

17 To see that there are only two physical degrees of freedom, note that the constraints (4.48) and (4.49) consist of four independent
equations, which may in principle be used to fix four components of the metric tensor. Specifying the spacetime coordinates (there are
four in number) fixes another four components of the metric tensor (the lapse function and shift vector), leaving two components.

18 The identification of the physical degrees of freedom for the gravitational field is a highly nontrivial problem, and to our knowledge,
remains an open problem.

19 To obtain the full ADM Hamiltonian, we choose the variation to take the form δxµ = (αnµ + βµ)∆t.
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with Σt having no boundary.
We now attempt to obtain the Hamilton-Jacobi equation for the gravitational field by defining a classical action

Sc
GRJγij

1 , τ1; γ
kl
2 , τ2K, where the brackets J K denote functionals over boundary surfaces. The quantities γij

1 (y1) and

τ1(y1) are functions over the surfaces ΣI , and the quantities γij
2 (y2) and τ2(y2) are functions over the surfaces ΣF .

The quantities γij
1 (y1) and γij

2 (y2) are the inverse induced metrics on the respective boundary surfaces ΣI and ΣF ,
and the values of τ1 and τ2 correspond to the time coordinate in Gaussian normal coordinates constructed at the
boundary surfaces ΣI and ΣF . If τ1 is held fixed, the differential of Sc

GRJγij
1 , τ1; γ

kl
2 , τ2K takes the following form:

δSc
GR =

δSc
GR

δγij
1

δγij
1 +

δSc
GR

δγkl
2

δγkl
2 +

δSc
GR

δτ2
δτ2 (4.54)

The value of the classical action Sc
GR coincides with the usual action SGR for solutions of the vacuum Einstein field

equations Gµν = 0. Furthermore, the Hamiltonian constraint (4.49) for such solutions suggests that Hgf = 0. When
comparing the differential (4.54) with the variation (4.51), we obtain the following expressions:

δSc
GR

δγkl
2

= Pkl|ΣF (4.55)

δSc
GR

δτ2
= Hgf

(

Pij |ΣF
, γij

2

)

= Hgf

(

δSc
GR/δγ

ij
2 , γij

2

)

= 0 (4.56)

where we have made a substitution in (4.56) using (4.55). It is common to identify (4.56) as the Hamilton-Jacobi
equation for (vacuum) GR, as is often done in the literature [21, 23, 29], and it may be shown that (4.56) define the
dynamics for (vacuum) GR [22]. We note that equations (4.56) do not form the Hamilton-Jacobi equation for GR in
the same sense as the Hamilton-Jacobi equation in mechanics; Hgf is a Hamiltonian density, not a Hamiltonian, so
(4.56) should be viewed as a set of local constraints. The Hamilton-Jacobi equation for GR is the following:

Hgf

r
δSc

GR/δγ
ij
2 , γij

2

z
=

∫

ΣF

Hgf

(

δSc
GR/δγ

ij
2 , γij

2

)

d3y = 0 (4.57)

which forms a functional differential equation for Sc
GR.

V. VARIATION OF THE GRAVITATIONAL ACTION: SPACETIMES WITH SPATIAL BOUNDARY

A. Cylindrical boundaries and the action

We now consider a compact region of spacetime W with a boundary ∂W that has the cylindrical topology indicated
in figure 2. In particular, we choose the boundary ∂W so that the spacelike portions ΣI and ΣF have the topology of
a solid 3-sphere,20 and the timelike portion B has the topology of the manifold R̄× S2, where R̄ is a compact subset
of R.21 For the remainder of this paper, we shall (unless otherwise stated) require that the spacetime boundary has
such a topology, and the the surfaces ΣI , ΣF and B maintain their respective signatures. We shall also require that
the unit normal vectors be outward pointing, and use the notation established in figure 2; nµ

I is the unit normal to
ΣI , n

µ
B is the unit normal to B, and nµ

F is the unit normal to ΣF . We shall also require that the variations are such
that the boundary and the metric gµν is held fixed at the 2-surfaces SI and SF , and that the inner products of the
unit normal vectors on either side of the 2-surfaces SI and SF are held fixed; in particular, we hold fixed the following
quantities:

〈nI , nB〉|SI
:= gµν |SI

(nµ
I )|SI

(nν
B)|SI

〈nF , nB〉|SF
:= gµν |SF

(nµ
F )|SF

(nν
B)|SF

(5.1)

It is convenient to introduce some additional notation for quantities defined on the different portions of the boundary
∂W. For the induced metric γij of the boundary ∂W, we write:

hij
I := γij |ΣI

qab := γab|B
hij
F := γij |ΣF

(5.2)

20 In particular, a solid 3-sphere is a subset of R3 defined by the condition x2 + y2 + z2 ≤ C, where C is a constant.
21 It must be mentioned that we must choose the region W of a dimensional spacetime so that admits a boundary with such a topology.
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FIG. 2. An illustration of a cylindrical boundary for a spacetime region W, with boundary ∂W = ΣI ∪B ∪ ΣF . The vertical
direction is timelike, so that ΣI and ΣF are spacelike surfaces of codimension one, and B is a timelike surface of codimension
one. The surfaces SI and SF are two dimensional surfaces (assumed to have exclusively spacelike tangent vectors) that form
boundaries between ΣI , B and ΣF . The unit normal vectors (shown in red) are defined to be outward pointing; nI = [nµ

I ] is
the unit normal to ΣI , nB = [nµ

B
] is the unit normal to B, and nF = [nµ

F ] is the unit normal to ΣF .

where lowercase Latin indices i, j, ... from the middle of the alphabet correspond to coordinates on ΣI and ΣF , and
lowercase Latin indices a, b, ... from the beginning of the alphabet correspond to coordinates on B. An underline
will be used to indicate quantities defined on the spatial boundary B; for instance, Kij and K denote the respective
extrinsic curvature and mean curvature for the spatial boundary surface B.
The gravitational action over the region W is given by:

SGR,B[g
µν ] := SEH [gµν ] + SGHY + SC (5.3)

where SEH [gµν ] is the Einstein-Hilbert action:

SEH [gµν ] :=
1

2κ

∫

W

R
√

|g| d4x. (5.4)

As before, SGHY is the GHY Boundary term, but it now takes the form:

SGHY = − 1

κ

∫

ΣF

K
√

|h| d3y + 1

κ

∫

B

K
√

|q| d3y − 1

κ

∫

ΣI

K
√

|h| d3y. (5.5)

The quantity SC is the “corner term,” which one must include if the boundary ∂W is nonsmooth [30–34].22 For the
boundary surface in figure 2, the corner term takes the following form:

SC :=
1

κ

∫

SI

ηI
√

|σ| d2z + 1

κ

∫

SF

ηF
√

|σ| d2z (5.6)

where:

ηI := arcsinh (〈nI , nB〉|SI
)

ηF := arcsinh (〈nF , nB〉|SF
)

(5.7)

with 〈nI , nB〉|SI
and 〈nF , nB〉|SF

being defined by (5.1). Note that if the unit normal vectors are orthogonal, the
corner term vanishes.

22 Our construction assumes the 2-surfaces SI , SF , and the 3-surfaces ΣI , and ΣF are all spacelike (in the sense that they have spacelike
tangent vectors), and that the surface B is timelike (in the sense that it has a Lorentzian signature for the induced metric). The
boundary terms for the more general case, where the boundaries are nonsmooth and contain null surfaces, may be found in [35–39].
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B. The Weiss variation

We now write down the Weiss variation of the action (5.3). The earlier result (4.46) for the variation of the
gravitational action may be carried over if we demand that the variations do not reach the 2-surfaces SI and SF ,
where the boundary ∂W becomes nonsmooth. In particular, we require that δxµ|SI

= 0, δxµ|SF
= 0, δgµν |SI

= 0
and δgµν |SF

= 0. We also require that 〈nI , nB〉|SI
and 〈nF , nB〉|SF

are held fixed under the variations so that the
variation of the corner term vanishes: δSC = 0. Under these conditions, the variation of the gravitational action has
the same form as (4.46):

δSGR,B =
1

2κ

∫

W

Gµν δg
µν
√

|g| d4x+
ε

2κ

∫

∂W

pij ∆γij
√

|γ| d3y

+
ε

2κ

∫

∂W

(

(

3R− ε(K2 −Kij K
ij)
)

nµ − 2Dαp
αβ γµβ

)

δxµ
√

|γ| d3y
(5.8)

We may simplify the above expression by choosing a boundary displacement δxµ of the following form:

δxµ|ΣI
= nµ ∆τi(y) for y ∈ ΣI

δxµ|B = nµ ∆r(y) for y ∈ B

δxµ|ΣF
= nµ ∆τf (y) for y ∈ ΣF

(5.9)

where δxµ is assumed to be continuous, and vanishes at the 2-surfaces SI and SF :

δxµ|SI
= 0

δxµ|SF
= 0

(5.10)

The variation of the action may then be written as (I and F are labels–they are not indices to be summed over):

δSGR,B =
1

2κ

∫

W

Gµν δg
µν
√

|g| d4x+

∫

ΣI

(

P I
ij ∆hij

I − HI ∆τI

)

d3y

+

∫

B

(

P ab ∆qab − HB ∆s

)

d3y +

∫

ΣF

(

PF
ij ∆hij

F − HF ∆τF

)

d3y

(5.11)

where we have defined the momentum densities (recall that an underline denotes quantities defined on the boundary
B):

P I
ij := − 1

2κ
(Kij −K hI

ij)
√

|hI |

P ab :=
1

2κ
(Kab −K qab)

√

|q|

PF
ij := − 1

2κ
(Kij −K hF

ij)
√

|hF |

(5.12)

and the Hamiltonian densities:

HI := − 1

2κ

[

3R + (K2 −Kij K
ij)

]

√

|hI |

HB := − 1

2κ

[

3R − (K2 −Kab K
ab)

]

√

|q|

HF := − 1

2κ

[

3R + (K2 −Kij K
ij)

]

√

|hF |

(5.13)

where HI is defined on ΣI and HF is defined on ΣF .

C. Time evolution and the Brown-York quasilocal energy

We conclude this paper with a brief discussion of time evolution, and a derivation of the Brown-York quasilocal
energy. One might imagine time evolution as a displacement of the boundary ΣF in the future time direction, with
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an accompanying stretch of the boundary B. To see this, consider the classical action Sc
GR,BJhij

I ; q
ab;hij

F K which has

the value of the action functional SGR,B[g
µν ] evaluated on solutions of the vacuum Einstein field equations Gµν = 0.

The Ricci scalar R for these solutions vanishes, so that the action takes the following form:

Sc
GR,BJhij

I ; q
ab;hij

F K = − 1

κ

∫

ΣF

K
√

|h| d3y + 1

κ

∫

B

K
√

|q| d3y − 1

κ

∫

ΣI

K
√

|h| d3y (5.14)

where the extrinsic curvatures for the boundary K and K are obtained from vacuum solutions of the Einstein field
equations consistent with boundary conditions given by the induced boundary metrics hij

I , q
ab and hij

F . We note that
HI = 0, HB = 0, and HF = 0 on vacuum solutions of the Einstein field equations; from equation (5.11), it follows
that the variation of the classical action Sc

GR,B satisfies:

δSc
GR,B =

∫

ΣI

P I
ij ∆hij

I d3y +

∫

B

P ab ∆qab d3y +

∫

ΣF

PF
ij ∆hij

F d3y (5.15)

We therefore find that the classical action Sc
GR,B is independent of displacements δxµ of the boundary in the normal

direction (under the condition (5.10)). A stretch in the boundary B, on the other hand, does affect the value of the
classical action Sc

GR,B; a stretching of the boundary B corresponds to an increase in its 3-volume, which will affect

the integral over B in (5.15).
To obtain the Brown-York quasilocal energy, we perform a 3 + 1 decomposition of the boundary metric qab:

ds2 = qab dy
a dyb = −(α2 + σAB βA βB) dt2 + σAB βA dzB dt+ σAB dzA dzB (5.16)

where σAB is the induced metric on constant t hypersurfaces of B. The volume element may be written as
α
√

| det(σAB)|; we may characterize the stretching of the boundary with a change in the lapse function α. The

inverse metric components qab may be written as:

q00 = −α−2

q0A = α−2 βA

qAB = −α−2 βA βB + σAB

(5.17)

In mechanics, the Hamiltonian in Hamilton-Jacobi theory is the derivative of the action with respect to a change in
the time parameter t. In the classical action Sc

GR,B, the lapse function α characterizes the stretch in the boundary,
so it plays the role of a time parameter. The analogue to the Hamiltonian is the following functional derivative:

α
√

|q|
δSGR,B

δα
= 2

1

α2
√

|q|

(

δSGR,B

δq00
− 2

δSGR,B

δq0A
βA +

δSGR,B

δqAB
βA βB

)

= 2
1

α2
√

|q|

(

P00 − 2P0Aβ
A + PABβ

A βB
)

(5.18)

We define a unit vector [n̄a] := (1/α,−βA/α) that is normal to the constant t surfaces, and tangent to the boundary
B. Equation (5.18) may then be rewritten:

α
√

|q|
δSGR,B

δα
=

1

κ
n̄a n̄b P ab =

1

κ
n̄a n̄b (Kab −K qab) (5.19)

We may integrate this over a constant t surface on B to obtain the following expression for the energy [3]:

E :=
1

κ

∫

St

n̄a n̄b (Kab −K qab)
√

| det(σAB)| d2z (5.20)

This expression is equivalent to the Brown-York quasilocal energy, up to a subtraction term. One may, following
[3], obtain similar integral expressions for a momentum-like and a stress-like quantity from functional derivatives

with respect to βA and σAB. Note that, unlike the original result in [3] our expression (5.20) is independent of the
foliation in the bulk manifold W; we do not require that the time coordinate in the bulk be the same as the time
coordinate t on the boundary B, and while the result in [3] requires the condition that the foliation in the bulk consist
of hypersurfaces that are orthogonal to the boundary B, our expression (5.20) for quasilocal energy does not require
such a condition.
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Appendix A: The Gauss, Codazzi and Ricci Equations in the bulk coordinate basis

In this appendix, we establish some formulas (the Gauss, Codazzi and Ricci equations) relating the curvature of
a hypersurface ΣS to the curvature of the bulk manifold U (assumed to be Lorentzian). While these equations are
well-known, the derivations we have encountered in the physics literature were obtained with the 3+1 formalism in
mind; in particular, they assume a spacelike surface embedded in a Lorentzian spacetime. Our formulas apply to both
spacelike and timelike surfaces; the distinction is governed by the quantity ε = nµnµ = ±1. We assume the existence
of a foliation in U ; all foliation-dependent quantities are defined with respect to this foliation. The definitions in
section III B will be used here.

1. Some preliminary results

We begin by deriving a few results that will be useful for us later. Given a vector field V α tangent to the
hypersurfaces ΣS , i.e. one that satisfies V αnα = 0 for the unit normal vector field nα, we infer that ∇µ(V

αnα) = 0.
By the product rule, we may obtain the following:

nα∇µV
α + V α∇µnα = 0 ⇒ nα∇µV

α = −V α∇µnα (A1)

If we project the free index of the above onto the hypersurface, we obtain:

γµ
ν nα∇µV

α = −V αγµ
ν∇µnα

= −V αKνα
(A2)

Next, work out the expression for the covariant derivative of the induced metric:

∇αγµν = ∇αgµν − ε∇α(nµ nν)

= −ε nν ∇αnµ − ε nµ ∇αnν
(A3)

From equation (3.15), we have ∇µnν = Kµν + ε nµ aν , so that we obtain the following expressions for the covariant
derivatives of the induced metric and projection tensor:

∇αγµν = −ε nν Kαµ − nν nα aµ − ε nµ Kαν − nµ nα aν

∇αγ
µ
ν = −ε nν K

µ
α − nν nα aµ − ε nµ Kαν − nµ nα aν .

(A4)

If we project the derivative index onto the hypersurface, we obtain the following formulas for the covariant derivative
of the projection tensor:

γα
β∇αγµν = −ε nν Kβµ − ε nµ Kβν

γα
β∇αγ

µ
ν = −ε nν K

µ
β − ε nµ Kβν.

(A5)

Finally, we derive a useful expression for ∇µn
ν ∇νn

µ. Using the expression ∇µnν = Kµν + ε nµ aν , we may write
the following:

∇µn
ν ∇νn

µ = (Kµ
ν + ε nµ aν)(Kν

µ + ε nν aµ)

= Kµ
ν Kν

µ + ε nµ aν Kν
µ + ε Kµ

ν nν aµ + ε2 nµ aν nν a
µ

(A6)

Since nµaµ = nµa
µ = 0,23 and nνKµ

ν = 0, the last three terms vanish, and we obtain the result:

∇µn
ν ∇νn

µ = Kµ
ν Kν

µ (A7)

23 One may show this using the formula for acceleration (3.17) and the requirement that nµ have unit norm.
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2. Deriving the Gauss equation

We are now in a position to derive the Gauss equation, which relates the intrinsic (Riemann) and extrinsic curvature
of a hypersurface ΣS to the curvature of the bulk manifold U . For some vector V α field tangent to the hypersurfaces
ΣS , the Riemann tensor for ΣS satisfies the commutator relation:

DµDνV
α −DνDµV

α = R̄α
βµν V β . (A8)

We begin by analyzing the first term in the commutator:

DµDνV
ρ = γα

µγ
σ
ν γ

ρ
τ∇α(γ

β
σγ

τ
λ∇βV

λ)

= γα
µγ

σ
ν γ

ρ
τγ

τ
λ∇αγ

β
σ∇βV

λ + γα
µγ

σ
ν γ

ρ
τγ

β
σ∇αγ

τ
λ∇βV

λ + γα
µγ

σ
ν γ

ρ
τγ

β
σγ

τ
λ∇α∇βV

λ

= γα
µγ

σ
ν γ

ρ
λ∇αγ

β
σ∇βV

λ + γα
µγ

ρ
τγ

β
ν∇αγ

τ
λ∇βV

λ + γα
µγ

ρ
λγ

β
ν∇α∇βV

λ

= γα
µγ

β
ν γ

ρ
λ∇αγ

σ
β∇σV

λ + γα
µγ

β
ν γ

ρ
λ∇αγ

λ
τ∇βV

τ + γα
µγ

β
ν γ

ρ
λ∇α∇βV

λ

(A9)

Using equation (A5), we have:

DµDνV
ρ = −ε γβ

ν γ
ρ
λ(nβ Kσ

µ + nσ Kµβ)∇σV
λ − ε γβ

ν γ
ρ
λ(nτ Kλ

µ + nλ Kµτ )∇βV
τ

+ γα
µγ

β
ν γ

ρ
λ∇α∇βV

λ

= −ε γβ
ν γ

ρ
λ Kµβ nσ∇σV

λ − ε γβ
ν γ

ρ
λ Kλ

µ nτ∇βV
τ + γα

µγ
β
ν γ

ρ
λ∇α∇βV

λ

= −ε Kµν γ
ρ
λ nσ∇σV

λ − ε Kρ
µ(γ

β
ν nτ∇βV

τ ) + γρ
λγ

α
µγ

β
ν∇α∇βV

λ

(A10)

and using equation (A2) in the second term on the last line, we have the result:

DµDνV
ρ = −ε Kµν γ

ρ
β nσ∇σV

β + ε Kρ
µ Kντ V

τ + γρ
λ(γ

α
µγ

β
ν∇α∇βV

λ) (A11)

Finally, we plug this result back into the commutator to obtain the result:

[Dµ, Dν ]V
ρ = ε(Kρ

µ Kντ −Kρ
ν Kµτ )V

τ + γρ
λ(γ

α
µγ

β
ν [∇α,∇β ]V

λ) (A12)

Upon comparison of the above with equation (A8) and the expression[∇ν,∇ν ]V
ρ = Rρ

σµνV
σ, we obtain:

R̄ρ
σµν V σ = ε(Kρ

µ Kντ −Kρ
ν Kµτ )V

τ + γρ
λ(γ

α
µγ

β
νR

λ
ταβV

τ )

= −ε(Kρ
ν Kµσ −Kρ

µ Kνσ)V
σ + γρ

λ(γ
α
µγ

β
νR

λ
ταβγ

τ
σV

σ)

= −
(

ε(Kρ
ν Kµσ −Kρ

µ Kνσ) + γρ
λγ

τ
σγ

α
µγ

β
νR

λ
ταβ

)

V σ

(A13)

The above expression must hold for any vector field V α tangent to the hypersurfaces ΣS , which implies the following:

γρ
λγ

τ
σγ

α
µγ

β
ν Rλ

ταβ = R̄ρ
σµν + ε(Kρ

ν Kµσ −Kρ
µ Kνσ) (A14)

The formula above is called the Gauss Equation, which establishes an algebraic relationship between the Riemann
curvature tensor Rλ

ταβ in the bulk manifold U to the respective intrinsic (Riemann) and extrinsic curvature tensors
R̄ρ

σµν and Kµν for the hypersurface ΣS .

3. Useful contractions of the Gauss equation

We now discuss some contractions of the Gauss equation that will appear often in this article. First, we contract the
indices ρ and σ of the Gauss equation (A14) to obtain an expression for the hypersurface Ricci tensor R̄µν := R̄σ

µσν :

γσ
λγ

τ
σγ

α
µγ

β
ν Rλ

ατβ = R̄σ
µσν + ε(Kσ

ν Kσµ −K Kνµ) (A15)

where we have used the formula for the mean curvature K = γµνKµν . The left-hand side of the above equation
becomes:

γσ
λγ

τ
σγ

α
µγ

β
ν Rλ

ατβ = γτ
λγ

α
µγ

β
ν Rλ

ατβ = (δτλ − ε nτ nλ)γ
α
µγ

β
ν Rλ

ατβ

= γα
µγ

β
ν Rαβ − ε nτ nλγ

α
µγ

β
ν Rλ

ατβ

= γα
µγ

β
ν (Rαβ − ε nσ nτ Rσατβ)

(A16)
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It should be noted that nα nσ nτ Rσατβ = 0 and nσ nτ nβ Rσατβ = 0 due to the antisymmetry in the indices α and σ,
and the indices τ and β. It follows that γα

µ γβ
ν nσ nτ Rσατβ = nσ nτ Rσµτν . Equation (A15) becomes the following:

γα
µγ

β
νRαβ − ε nσ nτ Rσµτν = R̄µν + ε(Kσ

ν Kσµ −K Kνµ) (A17)

We now contract the remaining two indices (with the induced metric/projection tensor) to get an expression for
the Ricci scalar. Again, the contraction of the right hand side of (A17) is straightforward, but the contraction of the
left hand side requires some algebra:

γµν(γα
µγ

β
νRαβ − ε nσ nτ Rσµτν) = γµν γα

µγ
β
νRαβ − ε nσ nτ γµν Rσµτν

= γαβ Rαβ − ε nσ nτ (gµν − ε nµ nν)Rσµτν

= (gαβ − ε nα nβ)Rαβ − ε nσ nτ Rστ

+ ε2 nσ nτ nµ nν Rσµτν

= R− 2 ε nα nβ Rαβ

(A18)

where we have used nσ nτ nµ nν Rσµτν = 0 (which follows from the antisymmetry of the first two and last two indices)
in the third equality. The contracted form of (A17) is:

R− 2 ε nµ nν Rµν = R̄+ ε(Kµν Kµν −K2) (A19)

We may obtain an alternate expression by writing Rµν n
µnν in terms of the extrinsic curvature. From the commutator

formula for the Riemann tensor, we have the following expression:

Rµνn
µnν = nν (∇σ∇ν −∇ν∇σ)n

σ

= nν∇σ∇νn
σ − nν∇ν∇σn

σ (A20)

Using the Leibniz rule, we may write:

∇σ (n
ν∇νn

σ) = ∇σn
ν∇νn

σ + nν∇σ∇νn
σ

∇ν (n
ν∇σn

σ) = ∇νn
ν∇σn

σ + nν∇ν∇σn
σ (A21)

The above allows us to rewrite equation (A20) as:

Rµνn
µnν = ∇σ (n

ν∇νn
σ)−∇σn

ν∇νn
σ −∇ν (n

ν∇σn
σ) +∇νn

ν∇σn
σ

= ∇σa
σ −Kσ

ν Kν
σ −∇ν (n

ν K) +K2

= K2 −Kµν Kµν +∇σ (a
σ − nσ K)

(A22)

where we have used the expression aσ = nν∇νn
σ for acceleration (3.17), the expression K = ∇µn

µ for mean curvature
(3.18), and equation (A7) in the second line. We may plug this back into equation (A19) to obtain the following
expression for the bulk Ricci scalar:

R = R̄+ ε(K2 −Kµν Kµν) + 2 ε∇σ (a
σ − nσ K) (A23)

4. The Codazzi equation

An alternate way of deriving the Gauss equation in the previous section is to project all the indices of the bulk
curvature tensor onto the hypersurface; in doing so, we obtain a tensorial equation with all indices tangent to the
hypersurface. However, one may choose instead to project some indices of the curvature tensor onto the hypersurface,
and to contract the remaining indices with that of the unit normal vector; this procedure also yields tensor equations
tangent to the hypersurface, this time of lower rank.
In this section, we obtain a differential relationship between the Riemann curvature tensor Rλ

ταβ in the bulk
manifold U and the extrinsic curvature tensor Kµν for the hypersurface ΣS by contracting one index of Rλ

ταβ with
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the unit normal vector and applying the projection operator to the remaining indices. Using the commutator formula
[∇µ,∇ν ]V

α = Rα
βµν V β for the bulk Riemann curvature tensor, we may write the following:24

γτ
κγ

µ
αγ

ν
β Rκ

εµν nε = γτ
κγ

µ
αγ

ν
β (∇µ∇ν −∇ν∇µ)n

κ

= γτ
κγ

µ
αγ

ν
β (∇µ(∇νn

κ)−∇ν(∇µn
κ))

= γτσγµ
αγ

ν
β (∇µ(∇νnσ)−∇ν(∇µnσ))

(A24)

where we have made use of metric compatibility ∇µg
κσ = 0 to lower the index on the normal vector in the last

equality. We plug in the expression ∇µnν = Kµν + ε nµ aν to obtain the following:

γτ
κγ

µ
αγ

ν
β Rκ

εµν nε = γτσγµ
αγ

ν
β (∇µ(Kνσ + ε nν aσ)−∇ν(Kµσ + ε nµ aσ))

= γτσγµ
αγ

ν
β(∇µKνσ + ε∇µnν aσ + ε nν ∇µaσ −∇νKµσ

− ε∇νnµ aσ − ε nµ ∇νaσ)

(A25)

Using γµ
α = 0 and the formula (3.15) for the extrinsic curvature Kαβ = γµ

αγ
ν
β∇µnν , we have:

γτ
κγ

µ
αγ

ν
β Rκ

εµν nε = DαKβ
τ −DβKα

τ + ε aτ (Kαβ −Kβα) (A26)

Where Dµ is the hypersurface covariant derivative. Making use of the symmetry Kµν = Kνµ, last two terms cancel
and we arrive at the Codazzi equation:

γτ
κγ

µ
αγ

ν
β Rκ

εµν nε = DαKβ
τ −DβKα

τ (A27)

We may sum over the indices α and τ to obtain the following expression for the left hand side:

γα
κ γ

µ
αγ

ν
β Rκ

εµν nε = γµ
κγ

ν
β Rκ

εµν nε = δµκγ
ν
β Rκ

εµν nε − ε γν
β nµ nκ Rκ

εµν nε

= γν
β Rκ

εκν nε − ε γν
β Rκεµν nκ nε nµ

= γν
β Rµν nµ

(A28)

where we have used Rκεµν nκ nε = 0 in the last line. The contracted Codazzi equation takes the form (using metric
compatibility Dαγ

α
β = 0 on the second term):

γν
β Rµν nµ = Dα

(

Kβ
α − γα

β K
)

(A29)

5. The Lie derivative of extrinsic curvature: The Ricci equation

We now derive the Ricci equation, which relates the Lie derivative of the extrinsic curvature to the bulk Riemann
curvature tensor. We shall take an indirect approach, and begin by computing the Lie derivative of the extrinsic
curvature with respect to the unit normal vector field. The Lie derivative of the extrinsic curvature is:

£nKµν = nα∇αKµν +Kαν∇µn
α +Kµα∇νn

α (A30)

We begin by computing the last two terms:

Kαν∇µn
α +Kµα∇νn

α = (∇αnν − ε nαaν)∇µn
α +KµαKν

α + ε Kµαnνa
α

= (∇αnν − ε nαaν)∇µn
α +KµαKν

α

+ ε (∇µnα − ε nµaα)nνa
α

(A31)

We make use of nα∇µnα = nα∇µn
α = 0 (which follows from nαnα = ε = ±1) to obtain the following result:

Kαν∇µn
α +Kµα∇νn

α = (∇αnν)(∇µn
α) +KµαKν

α + ε nν aα ∇µnα − nµ nν aα aα (A32)

24 Due to the symmetries of the Riemann tensor, we may write this without loss of generality.
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We now turn our attention to the first term in equation (A30), which is the directional derivative of the extrinsic
curvature:

nα∇αKµν = nα∇α (∇µnν − ε nµaν) = nα∇α∇µnν − ε aµaν − ε nµn
α∇αaν (A33)

From the definition of the projection tensor, we may write ε nµn
α = δαµ − γα

µ . We use this to expand the last term:

nα∇αKµν = nα∇α∇µnν − ε aµaν − δαµ ∇αaν + γα
µ ∇αaν

= nα∇α∇µnν − ε aµaν −∇µaν + γα
µ ∇αaν

= nα∇α∇µnν − ε aµaν −∇µ(n
α ∇αnν) + γα

µ ∇αaν

= nα∇α∇µnν − ε aµaν − (∇µn
α) (∇αnν)− nα ∇µ∇αnν + γα

µ ∇αaν

= nα(∇α∇µ −∇µ∇α)nν − ε aµaν − (∇µn
α) (∇αnν) + γα

µ ∇αaν

(A34)

At this point, we recognize the first two terms in the last line as the contraction of the Riemann curvature tensor with
two unit normal vectors; it is straightforward to show that nα[∇α,∇µ]nν = nαRνβαµn

β. The directional derivative
of the extrinsic curvature becomes:

nα∇αKµν = −Rαµβν nαnβ − ε aµaν − (∇µn
α) (∇αnν) + γα

µ ∇αaν (A35)

We plug equations (A32) and (A35) into the formula for the Lie Derivative of the extrinsic curvature (A30) to obtain:

£nKµν = −Rαµβν nαnβ − ε aµaν − (∇µn
α) (∇αnν) + γα

µ ∇αaν

+ (∇αnν)(∇µn
α) +KµαKν

α + ε nν aα ∇µnα − nµ nν aα aα

= −Rαµβν nαnβ +KµαKν
α − ε aµaν + γα

µ ∇αaν + ε nν a
α ∇µnα

− nµ nν aα aα

(A36)

We may simplify this further by working out the hypersurface covariant derivative Dµaν of the acceleration aν , which
is tangent to the hypersurfaces ΣS ; in doing so, we will recognize that several terms in the above expression (A36)
combine. Explicitly, we have:

Dµaν = γα
µγ

β
ν ∇αaβ = γα

µ∇αaν − ε nβnν γα
µ∇αaβ

= γα
µ∇αaν − ε nν γα

µ (n
β ∇αaβ)

(A37)

Since nβ aβ = 0, we may write ∇α(n
β aβ) = 0, and it follows that nβ ∇αaβ = −aβ ∇αn

β = −aβ ∇αnβ . This allows
us to write:

Dµaν = γα
µ∇αaν + ε nν γα

µ (a
β ∇αnβ)

= γα
µ∇αaν + ε nν δαµ (a

β ∇αnβ)− ε2 nν n
α nµ(a

β ∇αnβ)

= γα
µ∇αaν + ε nν(a

β ∇µnβ)− nν nµ aβ nα ∇αnβ

= γα
µ∇αaν + ε nν aα ∇µnα − nν nµ aα aα

(A38)

The three terms in the above result are the same as the last three terms in equation (A36). We may rewrite (A36) as:

£nKµν = −Rαµβν n
αnβ +KµαKν

α − ε aµaν +Dµaν (A39)

We may simplify this formula once more, using the expression aν = −εDν(ln(α)), which is straightforward to derive.
Recall that the lapse function is given by α = |gµν nµ nν |−1/2, where nµ = ∇µφ is the gradient of the foliation function
φ. We obtain:

Dµaν = −ε DµDν lnα = −ε Dµ

(

α−1 Dνα
)

= −ε
(

α−1 DµDνα− α−2 Dµα Dνα
)

= −ε
(

α−1 DµDνα− (Dµ lnα)(Dν lnα)
)

= −ε α−1 DµDνα+ ε aµ aν

(A40)

This may be rewritten as:

Dµaν − ε aµ aν = −ε α−1 DµDνα (A41)
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Finally, we plug this back in to equation (A39) to obtain our result:

£nKµν = −Rαµβν nαnβ +KµαKν
α − ε

α DµDνα (A42)

This formula is called the Ricci equation. Note that the right hand side is tangent to the hypersurface; if we contract
any index with the unit normal vector, the right hand side vanishes.25

Appendix B: Deriving the variation of area formulas

These formulas and portions of their derivation may be found in [15] and [16–18], but we choose to derive these
formulas in a manner that is less formal than that found in the literature. In particular, we present a derivation of
these formulas that is accessible–if still very complicated–to physicists.

1. The first variation of area formula

In this section, we derive the first variation of area formula [15], which is a formula describing the change in
the “area” of a hypersurface under infinitesimal displacements. We begin by defining the volume form for the bulk
manifold M:

Ω :=
1

N !
ǫi1...iN dxi1 ∧ ... ∧ dxiN =

1

N !

√

|g| ǫi1...iN dxi1 ∧ ... ∧ dxiN (B1)

where ǫi1...iN is the Levi-Civita symbol and ǫi1...iN :=
√

|g| ǫi1...iN is the Levi-Civita pseudotensor. It is not difficult
to show that on a semi-Riemannian manifold,

£V Ω = diV Ω = ∇µV
µ Ω (B2)

where V µ is a vector field, and the interior product iuω of some p-form ω and some vector field u is defined by the
expression:

iuω :=
1

(p− 1)!
uµ ωµ α1...αp−1

dxα1 ∧ ... ∧ dxαp−1 (B3)

The formula for the Lie derivative (B2) of the volume form Ω, allows us to write:

£nΩ = ∇αn
α Ω = K Ω ⇒ K ∼ 1

δV

d(δV )

dS
(B4)

We may take this one step further, and demonstrate that the mean curvature also measures the fractional rate of
change for the surface element dΣ of some hypersurface Σ. The hypersurface volume element dΣ may be defined as:

dΣ := inΩ =
1

(N − 1)!

√

|g| nµ ǫ µ α1...αN−1
dxα1 ∧ ... ∧ dxαN−1

=
ε

(N − 1)!

√

|γ| ǫ i1...iN−1
dyi1 ∧ ... ∧ dyiN−1

(B5)

Recall that yi are the coordinates on the hypersurface Σ, and γ := det(γij). From Cartan’s formula£uω = diuω+iudω,
one may obtain the expression £uiuω = iu£uω for a p-form ω and some vector field u. Using this result, the Lie
derivative of the hypersurface volume element is

£ndΣ = £n(inΩ) = in(£nΩ) = in(∇αn
α Ω) = K inΩ

⇒ £ndΣ = K dΣ
(B6)

25 To see that Rαµβν n
αnβ is tangent to the hypersurface, not that the symmetries of the Riemann tensor are such that another contraction

of the quantity Rαµβν nα nβ with the unit normal vector would cause the resulting expression to vanish. One may therefore infer that

the quantity Rαµβν nα nβ is automatically tangent to the hypersurface.
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This expression may also be obtained explicitly by applying the Lie derivative formula for tensors to the components
of dΣ; since £nn

µ = 0, it is not surprising that £nΩ and £ndΣ are both proportional to the mean curvature.
This result in equation (B6) may be used to obtain a formula for the first variation of area, which is the change in

the volume of a hypersurface under an infinitesimal displacement along the flow of some vector field vµ. The change
in the volume element under an infinitesimal displacement, which we write as δxµ = δλ vµ (where λ is a parameter
along the integral curves of vµ), is:

δdΣ = £δxdΣ = £δx(inΩ) (B7)

We may decompose the displacement “vector” δxµ into a part normal to the hypersurface and a part tangent to the
hypersurface:

δxµ = δa nµ + δbµ

δa := ε δxαnα = ε δλ (vαnα)|Q
δbµ := γµ

α δxα = δλ γµ
αv

α|Q
(B8)

Since δa and δbµ are only defined on Q, they are functions of points y ∈ Q, so that derivatives of scalars formed
from these quantities in the direction of the unit normal vector must vanish; for instance, nµ ∇µδa = 0. From the
properties of the interior product, we note that iδa n+δb = δa in + iδb, and that in in = 0. Using Cartan’s formula, we
rewrite equation (B7) as:

δdΣ = diδxinΩ+ iδxd(inΩ)

= d(δa in inΩ + iδb inΩ) + δa in d(inΩ) + iδb d(inΩ)

= diδb(inΩ) + iδb d(inΩ) + δa in d(inΩ)

= £δb(inΩ) + δa(in d(inΩ) + din(inΩ))

= £δb(inΩ) + δa(£n(inΩ))

(B9)

where we have made use of in in = 0 in the third and fourth equality (we have added a zero in the latter). We may
replace inΩ with Σ, and since the vector δb is tangent to the hypersurface, we may write it in the coordinate basis
∂/∂yi on the hypersurface, so that £δbdΣ = Diδb

idΣ. The change in the surface element becomes:

δdΣ = £δxdΣ = (Diδb
i + δa K)dΣ (B10)

If we are given a hypersurface ΣS , then we may obtain the infinitesimal change of the “area” (by which we mean
the N − 1 dimensional volume of the hypersurface ΣS) by evaluating δa, δbi, K and dΣ at the hypersurface, and
integrating (B10). If Q ⊂ ΣS is a region of the hypersurface with boundary ∂Q, then the variation of area δA is given
by:

δA =

∫

Q

δdΣ =

∫

Q

(Dαδb
α + δa K)dΣ (B11)

Using the divergence theorem, we obtain the first variation of area formula [15]:

δA =

∫

Q

δa K dΣ +

∫

∂Q

δbi dσi (B12)

where dσi is the directed surface element on ∂Q, and δa and δbi = (∂yi/∂xµ) δbµ are defined in terms of the
displacement δxµ according to equation (B8). If ri is the unit normal vector to ∂Q (with norm εr = riri), z

A are
the coordinates on ∂Q, and σAB is the induced metric on ∂Q, we may rewrite the first variation of area formula in a
more explicit form:

δA =

∫

Q

δxµnµ K
√

det|γij |dN−1y +

∫

∂Q

δxν γµ
ν

(

∂yi

∂xµ

)

ri εr
√

det|σAB|dN−2z (B13)

Finally, we note that if ΣS has no boundary and the integral is performed over the whole of ΣS , the boundary integral
over ∂ΣS vanishes.
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2. The second variation of area formula

We now obtain a formula for the second order change in the volume of the hypersurface due to an infinitesimal
displacement, which is called the second variation of area formula [16–18]. For the sake of generality, we will begin
by considering two independent displacements of the hypersurface, δxµ and δx̃µ; and compute £δx̃µ£δxµdΣ, with dΣ
being the surface element of the hypersurface. From equation (B10), we may write:

£δxdΣ = (Diδb
i + δa K)dΣ

£δx̃dΣ = (Diδb̃
i + δã K)dΣ

(B14)

where we employ the decompositions δxµ = δa nµ + δbµ and δx̃µ = δã nµ + δb̃µ, with definitions as in equation (B8).

Again, we stress that the quantities δa, δã, δbµ and δb̃µ are functions of y ∈ Q only. We note that for some scalar
function ϕ, the Leibniz rule yields £V (ϕdΣ) = (£V ϕ) dΣ + ϕ£V dΣ. If (Diδb

i + δa K) is a scalar function, we may
use the Leibniz rule to write:

£δx̃µ£δxµdΣ = £δx̃µ((Diδb
i + δa K)dΣ)

= (£δx̃µ(Diδb
i + δa K)dΣ) + (Diδb

i + δa K)£δx̃µ dΣ

= (£δx̃µ(Diδb
i + δa K) + (Diδb

i + δa K)(Djδb̃
j + δã K))dΣ

= (δx̃µ∇µ(Diδb
i + δa K) +Diδb

i Djδb̃
j

+ δa Djδb̃
j K + δã Diδb

i K + δa δã K2)dΣ

(B15)

where for a scalar function ϕ, £nϕ = nµ∇µϕ in the last equality. Expanding further:

£δx̃µ£δxµdΣ = (δã nµ∇µ(Diδb
i + δa K) + δb̃jDj(Diδb

i + δa K)

+Diδb
i Djδb̃

j + δa Djδb̃
j K + δã Diδb

i K + δa δã K2)dΣ

= (δã nµ∇µ(Diδb
i) + δã nµ∇µδa K + δa δã nµ∇µK + δb̃jDjDiδb

i

+ δb̃jDjδa K + δa δb̃jDjK +Diδb
i Djδb̃

j + δa Djδb̃
j K

+ δã Diδb
i K + δa δã K2)dΣ

= (δa δã nµ∇µK + (δb̃jDjδa K + δa δb̃jDjK + δa Djδb̃
j K)

+ δb̃jDjDiδb
i +Diδb

i Djδb̃
j + δã Diδb

i K + δa δã K2)dΣ

(B16)

where we have eliminated two terms by noting that δa and δbi are functions of y ∈ Q only; normal derivatives of
quantities that are purely functions of y ∈ Q vanish. In particular, since δa and Diδb

i are purely functions of y ∈ Q,
we have nµ∇µδa = 0 and nµ∇µ(Diδb

i) = 0. Three terms in the above expression may be combined into a divergence,
so that:

£δx̃µ£δxµdΣ = (δa δã nµ∇µK + δb̃jDjDiδb
i +Diδb

i Djδb̃
j + δã Diδb

i K + δa δã K2

+Dj(δa δb̃j K))dΣ
(B17)

Next, we note that Dj(δb̃
j Diδb

i) = Djδb̃
j Diδb

i + δb̃j DjDiδb
i, which allows us to combine another two terms into a

divergence:

£δx̃µ£δxµdΣ = (δa δã
(

nµ∇µK +K2
)

+ δã Diδb
i KDj(δb̃

j Diδb
i) +Dj(δa δb̃

j K))dΣ

= (δa δã
(

£nK +K2
)

+ δã Diδb
i K +Dj(δb̃

j Diδb
i + δa δb̃j K))dΣ

(B18)

where we have again made use of the fact that for a scalar ϕ, £nϕ = nµ∇µϕ in the last equality. We now evaluate
£nK. To do so, we make use of the expression γµ

αγ
ν
β £nγ

αβ = −2Kµν and also the Ricci equation (A42):

£nK = Kµν £nγ
µν + γµν £nKµν

= Kµν γµ
αγ

ν
β £nγ

αβ − γµν Rαµβν nαnβ + γµν KµαK
α
ν − ε a2 + γµν Dµaν

= −2Kµν K
µν − gµν Rαµβν nαnβ + ε nµ nν Rαµβν nαnβ +KµαK

µα − ε a2 +Dµa
µ

= −Kµν K
µν −Rαβ nαnβ − ε a2 +Dµa

µ

(B19)
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where aµ := nµ ∇νn
µ is the acceleration and a2 := γµν aµ aν . In the second line, we made use of Kµν γµ

αγ
ν
β = Kαβ.

Plugging the above result back into equation (B18), we obtain:

£δx̃µ£δxµdΣ =

(

δa δã
(

K2 −Kµν Kµν −Rαβ nαnβ − ε a2 +Dµa
µ
)

+Dj(δb̃
j Diδb

i + δa δb̃j K) + δã Diδb
i K

)

dΣ

(B20)

We integrate the above formula over a region of the hypersurface Q ⊂ ΣS with boundary ∂Q to obtain the generalized
second variation of area formula:

δδx̃µδδxµA :=

∫

Q

£δx̃µ£δxµdΣ

=

∫

Q

(

δa δã
(

K2 −Kµν Kµν −Rαβ nαnβ − ε a2 +Dµa
µ
)

+Dj(δb̃
j Diδb

i + δa δb̃j K) + δã Diδb
i K

)

dΣ

(B21)

From the contracted Gauss equation (A19), one may obtain:

Rµν nµ nν =
ε

2

(

R− R̄− ε (Kµν Kµν −K2)
)

(B22)

where R̄ is the Ricci scalar for the hypersurface ΣS . Using the above, one may obtain the general second variation of
area formula:

δδx̃µδδxµA =

∫

Q

(

δa δã ε((1/2)(R̄+ ε(K2 −Kµν Kµν)−R)− a2 + εDµa
µ)

+Dj(δb̃
j Diδb

i + δa δb̃j K) + δã Diδb
i K

)

dΣ

(B23)

This formula is foliation dependent due to the presence of the acceleration aµ. In the immediate vicinity of Q, we
may construct Gaussian normal coordinates, in which the lapse function α is set to unity, so that by virtue of (3.17),
the acceleration aν = −εDν α = 0. If our original foliation reduces to that of Gaussian normal coordinates at Q,
then we may set aν = 0, so that:

δδx̃µδδxµA =

∫

Q

(

δa δã ε(1/2)
(

R̄+ ε(K2 −Kµν Kµν)−R
)

+Dj(δb̃
j Diδb

i + δa δb̃j K)

+ δã Diδb
i K

)

dΣ

(B24)

Finally, upon setting δx̃µ = δxµ, we obtain the second variation of area formula:

δ2A =

∫

Q

(

(δa)2 ε(1/2)
(

R̄+ ε(K2 −Kµν Kµν)−R
)

+Dj(δb
j Diδb

i + δa δbj K)

+ δa Diδb
i K

)

dΣ

(B25)

We conclude this appendix by briefly discussing an application of the second variation of area formula in cosmology.
If we set δxµ = δµ0∆t, the second variation of area formula may be interpreted as a measure of the acceleration or
deceleration for the expansion of the universe. One may also use the integrand of (B25) as a local measure of whether
the expansion of space is accelerating or decelerating. This may be particularly useful in characterizing the inflationary
epoch, since the universe must go through a period of accelerating expansion followed by a period of decelerating
expansion before the end of inflation. Since the universe is currently in a period of accelerating expansion, a period
of rapid inflation requires that the volume of the universe must have at least three inflection points, which may be
characterized by the points in time where the second variation of area vanishes.
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